Supervised classification of diffusion paths

Let X = ( X t ) t ∈[0,1] be a stochastic process with label Y ∈ {0, 1}.We assume that X is some Brownian diffusion when Y = 0, while X is another Brownian diffusion when Y = 1. Based on an explicit computation of the Bayes rule, we construct an empirical classification rule drawn from an i.i.d. samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of statistics 2013-07, Vol.22 (3), p.213-225
1. Verfasser: Cadre, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X = ( X t ) t ∈[0,1] be a stochastic process with label Y ∈ {0, 1}.We assume that X is some Brownian diffusion when Y = 0, while X is another Brownian diffusion when Y = 1. Based on an explicit computation of the Bayes rule, we construct an empirical classification rule drawn from an i.i.d. sample of copies of ( X , Y ). In a nonparametric setting, we prove that is a consistent rule, and we derive its rate of convergence under mild assumptions on the model.
ISSN:1066-5307
1934-8045
DOI:10.3103/S1066530713030034