Supervised classification of diffusion paths
Let X = ( X t ) t ∈[0,1] be a stochastic process with label Y ∈ {0, 1}.We assume that X is some Brownian diffusion when Y = 0, while X is another Brownian diffusion when Y = 1. Based on an explicit computation of the Bayes rule, we construct an empirical classification rule drawn from an i.i.d. samp...
Gespeichert in:
Veröffentlicht in: | Mathematical methods of statistics 2013-07, Vol.22 (3), p.213-225 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
= (
X
t
)
t
∈[0,1]
be a stochastic process with label
Y
∈ {0, 1}.We assume that
X
is some Brownian diffusion when
Y
= 0, while
X
is another Brownian diffusion when
Y
= 1. Based on an explicit computation of the Bayes rule, we construct an empirical classification rule
drawn from an i.i.d. sample of copies of (
X
,
Y
). In a nonparametric setting, we prove that
is a consistent rule, and we derive its rate of convergence under mild assumptions on the model. |
---|---|
ISSN: | 1066-5307 1934-8045 |
DOI: | 10.3103/S1066530713030034 |