Relevant statistics for Bayesian model choice

The choice of the summary statistics that are used in Bayesian inference and in particular in approximate Bayesian computation algorithms has bearings on the validation of the resulting inference. Those statistics are nonetheless customarily used in approximate Bayesian computation algorithms withou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2014-11, Vol.76 (5), p.833-859
Hauptverfasser: Marin, Jean‐Michel, Pillai, Natesh S, Robert, Christian P, Rousseau, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The choice of the summary statistics that are used in Bayesian inference and in particular in approximate Bayesian computation algorithms has bearings on the validation of the resulting inference. Those statistics are nonetheless customarily used in approximate Bayesian computation algorithms without consistency checks. We derive necessary and sufficient conditions on summary statistics for the corresponding Bayes factor to be convergent, namely to select the true model asymptotically. Those conditions, which amount to the expectations of the summary statistics differing asymptotically under the two models, are quite natural and can be exploited in approximate Bayesian computation settings to infer whether or not a choice of summary statistics is appropriate, via a Monte Carlo validation.
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12056