L1-optimal linear programming estimator for periodic frontier functions with Hölder continuous derivative

We propose a new estimator based on a linear programming method for smooth frontiers of sample points on a plane. The derivative of the frontier function is supposed to be Hölder continuous. The estimator is defined as a linear combination of kernel functions being sufficiently regular, covering all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2014-12, Vol.75 (12), p.2152-2169
Hauptverfasser: Nazin, A. V., Girard, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new estimator based on a linear programming method for smooth frontiers of sample points on a plane. The derivative of the frontier function is supposed to be Hölder continuous. The estimator is defined as a linear combination of kernel functions being sufficiently regular, covering all the points and whose associated support is of smallest surface. The coefficients of the linear combination are computed by solving a linear programming problem. The L 1 error between the estimated and the true frontier function is shown to be almost surely converging to zero, and the rate of convergence is proved to be optimal.
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117914120066