Mercury telluride colloidal quantum dots : electronic structure, size-dependent spectra, and photocurrent detection up to 12 µm

HgTe colloidal quantum dots are synthesized with high monodispersivity with sizes up to ∼15 nm corresponding to a room temperature absorption edge at ∼5 μm. The shape is tetrahedral for larger sizes and up to five peaks are seen in the absorption spectra with a clear size dependence. The size range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014, Vol.8, p.8676-8682
Hauptverfasser: E. Keuleyan, Sean, Guyot-Sionnest, Philippe, Delerue, Christophe, Allan, Guy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HgTe colloidal quantum dots are synthesized with high monodispersivity with sizes up to ∼15 nm corresponding to a room temperature absorption edge at ∼5 μm. The shape is tetrahedral for larger sizes and up to five peaks are seen in the absorption spectra with a clear size dependence. The size range of the HgTe quantum dots is extended to ∼20 nm using regrowth. The corresponding room temperature photoluminescence and absorption edge reach into the long-wave infrared, past 8 μm. Upon cooling to liquid nitrogen temperature, a photoconductive response is obtained in the long-wave infrared region up to 12 μm. Configuration-interaction tight-binding calculations successfully explain the spectra and the size dependence. The five optical features can be assigned to sets of single hole to single electron transitions whose strengths are strongly influenced by the multiband/multiorbital character of the quantum-dot electronic states.
ISSN:1936-0851
DOI:10.1021/nn503805h