A sphere theorem for three dimensional manifolds with integral pinched curvature
In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classific...
Gespeichert in:
Veröffentlicht in: | Communications in analysis and geometry 2017, Vol.25 (1), p.97-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | Communications in analysis and geometry |
container_volume | 25 |
creator | Bour, Vincent Carron, Gilles |
description | In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature. |
doi_str_mv | 10.4310/CAG.2017.v25.n1.a3 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01059130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01059130v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqXwB5i8MiT49VfsMaqgRaoEA8yW4zrEKHEqOy3i35OqiOlOp7sbHoTugZScAXlc1euSEqjKIxVlhNKyC7QAzXmhtaaXsyegC8WUuEY3OX8RAlxRvUBvNc77ziePp86PyQ-4HdPsk_d4FwYfcxij7fFgY2jHfpfxd5g6HOLkP9Oc70N0nd9hd0hHOx2Sv0VXre2zv_vTJfp4fnpfbYrt6_plVW8Lx6iYiqpS2tlGMwIgXcsl0VYqThvJpKtAcJCqqYQSQlHw3EPbtE0FTGrXOEoatkQP59_O9mafwmDTjxltMJt6a04ZASI0MHKEuUvPXZfGnJNv_wdAzImfmfmZEz8z8zMRjGXsF9nHY-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><source>International Press Journals</source><creator>Bour, Vincent ; Carron, Gilles</creator><creatorcontrib>Bour, Vincent ; Carron, Gilles</creatorcontrib><description>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</description><identifier>ISSN: 1019-8385</identifier><identifier>EISSN: 1944-9992</identifier><identifier>DOI: 10.4310/CAG.2017.v25.n1.a3</identifier><language>eng</language><publisher>International Press</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Communications in analysis and geometry, 2017, Vol.25 (1), p.97-124</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</citedby><orcidid>0000-0003-0698-0989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01059130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bour, Vincent</creatorcontrib><creatorcontrib>Carron, Gilles</creatorcontrib><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><title>Communications in analysis and geometry</title><description>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1019-8385</issn><issn>1944-9992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqXwB5i8MiT49VfsMaqgRaoEA8yW4zrEKHEqOy3i35OqiOlOp7sbHoTugZScAXlc1euSEqjKIxVlhNKyC7QAzXmhtaaXsyegC8WUuEY3OX8RAlxRvUBvNc77ziePp86PyQ-4HdPsk_d4FwYfcxij7fFgY2jHfpfxd5g6HOLkP9Oc70N0nd9hd0hHOx2Sv0VXre2zv_vTJfp4fnpfbYrt6_plVW8Lx6iYiqpS2tlGMwIgXcsl0VYqThvJpKtAcJCqqYQSQlHw3EPbtE0FTGrXOEoatkQP59_O9mafwmDTjxltMJt6a04ZASI0MHKEuUvPXZfGnJNv_wdAzImfmfmZEz8z8zMRjGXsF9nHY-w</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bour, Vincent</creator><creator>Carron, Gilles</creator><general>International Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0698-0989</orcidid></search><sort><creationdate>2017</creationdate><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><author>Bour, Vincent ; Carron, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bour, Vincent</creatorcontrib><creatorcontrib>Carron, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bour, Vincent</au><au>Carron, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sphere theorem for three dimensional manifolds with integral pinched curvature</atitle><jtitle>Communications in analysis and geometry</jtitle><date>2017</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>97</spage><epage>124</epage><pages>97-124</pages><issn>1019-8385</issn><eissn>1944-9992</eissn><abstract>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</abstract><pub>International Press</pub><doi>10.4310/CAG.2017.v25.n1.a3</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-0698-0989</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-8385 |
ispartof | Communications in analysis and geometry, 2017, Vol.25 (1), p.97-124 |
issn | 1019-8385 1944-9992 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01059130v1 |
source | International Press Journals |
subjects | Differential Geometry Mathematics |
title | A sphere theorem for three dimensional manifolds with integral pinched curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sphere%20theorem%20for%20three%20dimensional%20manifolds%20with%20integral%20pinched%20curvature&rft.jtitle=Communications%20in%20analysis%20and%20geometry&rft.au=Bour,%20Vincent&rft.date=2017&rft.volume=25&rft.issue=1&rft.spage=97&rft.epage=124&rft.pages=97-124&rft.issn=1019-8385&rft.eissn=1944-9992&rft_id=info:doi/10.4310/CAG.2017.v25.n1.a3&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01059130v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |