A sphere theorem for three dimensional manifolds with integral pinched curvature

In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in analysis and geometry 2017, Vol.25 (1), p.97-124
Hauptverfasser: Bour, Vincent, Carron, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 97
container_title Communications in analysis and geometry
container_volume 25
creator Bour, Vincent
Carron, Gilles
description In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.
doi_str_mv 10.4310/CAG.2017.v25.n1.a3
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01059130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01059130v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqXwB5i8MiT49VfsMaqgRaoEA8yW4zrEKHEqOy3i35OqiOlOp7sbHoTugZScAXlc1euSEqjKIxVlhNKyC7QAzXmhtaaXsyegC8WUuEY3OX8RAlxRvUBvNc77ziePp86PyQ-4HdPsk_d4FwYfcxij7fFgY2jHfpfxd5g6HOLkP9Oc70N0nd9hd0hHOx2Sv0VXre2zv_vTJfp4fnpfbYrt6_plVW8Lx6iYiqpS2tlGMwIgXcsl0VYqThvJpKtAcJCqqYQSQlHw3EPbtE0FTGrXOEoatkQP59_O9mafwmDTjxltMJt6a04ZASI0MHKEuUvPXZfGnJNv_wdAzImfmfmZEz8z8zMRjGXsF9nHY-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><source>International Press Journals</source><creator>Bour, Vincent ; Carron, Gilles</creator><creatorcontrib>Bour, Vincent ; Carron, Gilles</creatorcontrib><description>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</description><identifier>ISSN: 1019-8385</identifier><identifier>EISSN: 1944-9992</identifier><identifier>DOI: 10.4310/CAG.2017.v25.n1.a3</identifier><language>eng</language><publisher>International Press</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Communications in analysis and geometry, 2017, Vol.25 (1), p.97-124</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</citedby><orcidid>0000-0003-0698-0989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01059130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bour, Vincent</creatorcontrib><creatorcontrib>Carron, Gilles</creatorcontrib><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><title>Communications in analysis and geometry</title><description>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1019-8385</issn><issn>1944-9992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqXwB5i8MiT49VfsMaqgRaoEA8yW4zrEKHEqOy3i35OqiOlOp7sbHoTugZScAXlc1euSEqjKIxVlhNKyC7QAzXmhtaaXsyegC8WUuEY3OX8RAlxRvUBvNc77ziePp86PyQ-4HdPsk_d4FwYfcxij7fFgY2jHfpfxd5g6HOLkP9Oc70N0nd9hd0hHOx2Sv0VXre2zv_vTJfp4fnpfbYrt6_plVW8Lx6iYiqpS2tlGMwIgXcsl0VYqThvJpKtAcJCqqYQSQlHw3EPbtE0FTGrXOEoatkQP59_O9mafwmDTjxltMJt6a04ZASI0MHKEuUvPXZfGnJNv_wdAzImfmfmZEz8z8zMRjGXsF9nHY-w</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bour, Vincent</creator><creator>Carron, Gilles</creator><general>International Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0698-0989</orcidid></search><sort><creationdate>2017</creationdate><title>A sphere theorem for three dimensional manifolds with integral pinched curvature</title><author>Bour, Vincent ; Carron, Gilles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7789cab930116cf4609a6842b636c7154168b75855821e4e1fbfb71369cbc20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bour, Vincent</creatorcontrib><creatorcontrib>Carron, Gilles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bour, Vincent</au><au>Carron, Gilles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sphere theorem for three dimensional manifolds with integral pinched curvature</atitle><jtitle>Communications in analysis and geometry</jtitle><date>2017</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>97</spage><epage>124</epage><pages>97-124</pages><issn>1019-8385</issn><eissn>1944-9992</eissn><abstract>In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature.</abstract><pub>International Press</pub><doi>10.4310/CAG.2017.v25.n1.a3</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-0698-0989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-8385
ispartof Communications in analysis and geometry, 2017, Vol.25 (1), p.97-124
issn 1019-8385
1944-9992
language eng
recordid cdi_hal_primary_oai_HAL_hal_01059130v1
source International Press Journals
subjects Differential Geometry
Mathematics
title A sphere theorem for three dimensional manifolds with integral pinched curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sphere%20theorem%20for%20three%20dimensional%20manifolds%20with%20integral%20pinched%20curvature&rft.jtitle=Communications%20in%20analysis%20and%20geometry&rft.au=Bour,%20Vincent&rft.date=2017&rft.volume=25&rft.issue=1&rft.spage=97&rft.epage=124&rft.pages=97-124&rft.issn=1019-8385&rft.eissn=1944-9992&rft_id=info:doi/10.4310/CAG.2017.v25.n1.a3&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01059130v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true