A sphere theorem for three dimensional manifolds with integral pinched curvature
In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classific...
Gespeichert in:
Veröffentlicht in: | Communications in analysis and geometry 2017, Vol.25 (1), p.97-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous paper, we proved a number of optimal rigidity results for Riemannian manifolds of dimension greater than four whose curvature satisfy an integral pinching. In this article, we use the same integral Bochner technique to extend the results in dimension three. Then, by using the classification of closed three-manifolds with nonnegative scalar curvature and a few topological considerations, we deduce optimal sphere theorems for three-dimensional manifolds with integral pinched curvature. |
---|---|
ISSN: | 1019-8385 1944-9992 |
DOI: | 10.4310/CAG.2017.v25.n1.a3 |