A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease
Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here,...
Gespeichert in:
Veröffentlicht in: | Redox report : communications in free radical research 2009, Vol.14 (1), p.23-33 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Redox report : communications in free radical research |
container_volume | 14 |
creator | de la Villehuchet, A. Magon Brack, M. Dreyfus, G. Oussar, Y. Bonnefont-Rousselot, D. Chapman, M.J. Kontush, A. |
description | Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers in blood, plasma and urine, non-linear models have been designed, with a statistical methodology that includes variable selection, model training and model selection. Our data demonstrate that, despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in biological fluids can be predicted quantitatively from measured concentrations of a limited number of exogenous and endogenous antioxidants. |
doi_str_mv | 10.1179/135100009X392449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01048615v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66849402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-4053d2c8545848b897f02b88564b0edec67147e478bbb480064f055240b3bb533</originalsourceid><addsrcrecordid>eNp1kc9rVDEQx4Motra99yQ5CR6e5vdL8LSUagsLXhS8hSRvXjfy3ss2ybbuf2_KLi0IzmW-zHzmCzOD0CUlnyjtzWfKJSUtzC9umBDmFTqlveAdM0y_brq1u9ZmJ-hdKb-b4srot-iEGqqo6uUpcis8u7CJC3QTuLzE5Q677TanVsQ14boBvM0wxFBjWnAacfoTB1fjA-BSM5SC44LDJqclhibHyc2zqynv8RALuALn6M3opgIXx3yGfn69_nF1062_f7u9Wq27IJisnSCSDyxoKaQW2mvTj4R5raUSnsAAQfVU9CB67b0XmhAlRiIlE8Rz7yXnZ-jjwXfjJrvNcXZ5b5OL9ma1tk81QonQisoH2tgPB7Yter-DUu0cS4BpcgukXbFKaWEEYQ0kBzDkVEqG8dmZEvv0AvvvC9rI-6P3zs8wvAwcb96ALwegXSvl2T2mPA22uv2U8pjdEmKx_L_2fwGBjZLn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66849402</pqid></control><display><type>article</type><title>A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>de la Villehuchet, A. Magon ; Brack, M. ; Dreyfus, G. ; Oussar, Y. ; Bonnefont-Rousselot, D. ; Chapman, M.J. ; Kontush, A.</creator><creatorcontrib>de la Villehuchet, A. Magon ; Brack, M. ; Dreyfus, G. ; Oussar, Y. ; Bonnefont-Rousselot, D. ; Chapman, M.J. ; Kontush, A.</creatorcontrib><description>Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers in blood, plasma and urine, non-linear models have been designed, with a statistical methodology that includes variable selection, model training and model selection. Our data demonstrate that, despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in biological fluids can be predicted quantitatively from measured concentrations of a limited number of exogenous and endogenous antioxidants.</description><identifier>ISSN: 1351-0002</identifier><identifier>EISSN: 1743-2928</identifier><identifier>DOI: 10.1179/135100009X392449</identifier><identifier>PMID: 19161675</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>ANTIOXIDANTS ; Antioxidants - analysis ; Artificial Intelligence ; BIOLOGICAL MARKERS ; Biomarkers - blood ; Cardiovascular Diseases - blood ; Cardiovascular Diseases - pathology ; Chemical Sciences ; Chronic Disease ; Computer Science ; Female ; Humans ; Inflammation - blood ; Inflammation - pathology ; MACHINE LEARNING ; Male ; MODEL SELECTION ; Models, Biological ; NEURAL NETWORKS ; Neurodegenerative Diseases - blood ; Neurodegenerative Diseases - pathology ; Other ; OXIDATIVE STRESS ; TRAINING ; VARIABLE SELECTION</subject><ispartof>Redox report : communications in free radical research, 2009, Vol.14 (1), p.23-33</ispartof><rights>2009 Maney Publishing 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-4053d2c8545848b897f02b88564b0edec67147e478bbb480064f055240b3bb533</citedby><cites>FETCH-LOGICAL-c425t-4053d2c8545848b897f02b88564b0edec67147e478bbb480064f055240b3bb533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,4026,27930,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19161675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01048615$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Villehuchet, A. Magon</creatorcontrib><creatorcontrib>Brack, M.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Bonnefont-Rousselot, D.</creatorcontrib><creatorcontrib>Chapman, M.J.</creatorcontrib><creatorcontrib>Kontush, A.</creatorcontrib><title>A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease</title><title>Redox report : communications in free radical research</title><addtitle>Redox Rep</addtitle><description>Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers in blood, plasma and urine, non-linear models have been designed, with a statistical methodology that includes variable selection, model training and model selection. Our data demonstrate that, despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in biological fluids can be predicted quantitatively from measured concentrations of a limited number of exogenous and endogenous antioxidants.</description><subject>ANTIOXIDANTS</subject><subject>Antioxidants - analysis</subject><subject>Artificial Intelligence</subject><subject>BIOLOGICAL MARKERS</subject><subject>Biomarkers - blood</subject><subject>Cardiovascular Diseases - blood</subject><subject>Cardiovascular Diseases - pathology</subject><subject>Chemical Sciences</subject><subject>Chronic Disease</subject><subject>Computer Science</subject><subject>Female</subject><subject>Humans</subject><subject>Inflammation - blood</subject><subject>Inflammation - pathology</subject><subject>MACHINE LEARNING</subject><subject>Male</subject><subject>MODEL SELECTION</subject><subject>Models, Biological</subject><subject>NEURAL NETWORKS</subject><subject>Neurodegenerative Diseases - blood</subject><subject>Neurodegenerative Diseases - pathology</subject><subject>Other</subject><subject>OXIDATIVE STRESS</subject><subject>TRAINING</subject><subject>VARIABLE SELECTION</subject><issn>1351-0002</issn><issn>1743-2928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9rVDEQx4Motra99yQ5CR6e5vdL8LSUagsLXhS8hSRvXjfy3ss2ybbuf2_KLi0IzmW-zHzmCzOD0CUlnyjtzWfKJSUtzC9umBDmFTqlveAdM0y_brq1u9ZmJ-hdKb-b4srot-iEGqqo6uUpcis8u7CJC3QTuLzE5Q677TanVsQ14boBvM0wxFBjWnAacfoTB1fjA-BSM5SC44LDJqclhibHyc2zqynv8RALuALn6M3opgIXx3yGfn69_nF1062_f7u9Wq27IJisnSCSDyxoKaQW2mvTj4R5raUSnsAAQfVU9CB67b0XmhAlRiIlE8Rz7yXnZ-jjwXfjJrvNcXZ5b5OL9ma1tk81QonQisoH2tgPB7Yter-DUu0cS4BpcgukXbFKaWEEYQ0kBzDkVEqG8dmZEvv0AvvvC9rI-6P3zs8wvAwcb96ALwegXSvl2T2mPA22uv2U8pjdEmKx_L_2fwGBjZLn</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>de la Villehuchet, A. Magon</creator><creator>Brack, M.</creator><creator>Dreyfus, G.</creator><creator>Oussar, Y.</creator><creator>Bonnefont-Rousselot, D.</creator><creator>Chapman, M.J.</creator><creator>Kontush, A.</creator><general>Taylor & Francis</general><general>Maney Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2009</creationdate><title>A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease</title><author>de la Villehuchet, A. Magon ; Brack, M. ; Dreyfus, G. ; Oussar, Y. ; Bonnefont-Rousselot, D. ; Chapman, M.J. ; Kontush, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-4053d2c8545848b897f02b88564b0edec67147e478bbb480064f055240b3bb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANTIOXIDANTS</topic><topic>Antioxidants - analysis</topic><topic>Artificial Intelligence</topic><topic>BIOLOGICAL MARKERS</topic><topic>Biomarkers - blood</topic><topic>Cardiovascular Diseases - blood</topic><topic>Cardiovascular Diseases - pathology</topic><topic>Chemical Sciences</topic><topic>Chronic Disease</topic><topic>Computer Science</topic><topic>Female</topic><topic>Humans</topic><topic>Inflammation - blood</topic><topic>Inflammation - pathology</topic><topic>MACHINE LEARNING</topic><topic>Male</topic><topic>MODEL SELECTION</topic><topic>Models, Biological</topic><topic>NEURAL NETWORKS</topic><topic>Neurodegenerative Diseases - blood</topic><topic>Neurodegenerative Diseases - pathology</topic><topic>Other</topic><topic>OXIDATIVE STRESS</topic><topic>TRAINING</topic><topic>VARIABLE SELECTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Villehuchet, A. Magon</creatorcontrib><creatorcontrib>Brack, M.</creatorcontrib><creatorcontrib>Dreyfus, G.</creatorcontrib><creatorcontrib>Oussar, Y.</creatorcontrib><creatorcontrib>Bonnefont-Rousselot, D.</creatorcontrib><creatorcontrib>Chapman, M.J.</creatorcontrib><creatorcontrib>Kontush, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Redox report : communications in free radical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Villehuchet, A. Magon</au><au>Brack, M.</au><au>Dreyfus, G.</au><au>Oussar, Y.</au><au>Bonnefont-Rousselot, D.</au><au>Chapman, M.J.</au><au>Kontush, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease</atitle><jtitle>Redox report : communications in free radical research</jtitle><addtitle>Redox Rep</addtitle><date>2009</date><risdate>2009</risdate><volume>14</volume><issue>1</issue><spage>23</spage><epage>33</epage><pages>23-33</pages><issn>1351-0002</issn><eissn>1743-2928</eissn><abstract>Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers in blood, plasma and urine, non-linear models have been designed, with a statistical methodology that includes variable selection, model training and model selection. Our data demonstrate that, despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in biological fluids can be predicted quantitatively from measured concentrations of a limited number of exogenous and endogenous antioxidants.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>19161675</pmid><doi>10.1179/135100009X392449</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1351-0002 |
ispartof | Redox report : communications in free radical research, 2009, Vol.14 (1), p.23-33 |
issn | 1351-0002 1743-2928 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01048615v1 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ANTIOXIDANTS Antioxidants - analysis Artificial Intelligence BIOLOGICAL MARKERS Biomarkers - blood Cardiovascular Diseases - blood Cardiovascular Diseases - pathology Chemical Sciences Chronic Disease Computer Science Female Humans Inflammation - blood Inflammation - pathology MACHINE LEARNING Male MODEL SELECTION Models, Biological NEURAL NETWORKS Neurodegenerative Diseases - blood Neurodegenerative Diseases - pathology Other OXIDATIVE STRESS TRAINING VARIABLE SELECTION |
title | A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine-learning%20approach%20to%20the%20prediction%20of%20oxidative%20stress%20in%20chronic%20inflammatory%20disease&rft.jtitle=Redox%20report%20:%20communications%20in%20free%20radical%20research&rft.au=de%20la%20Villehuchet,%20A.%20Magon&rft.date=2009&rft.volume=14&rft.issue=1&rft.spage=23&rft.epage=33&rft.pages=23-33&rft.issn=1351-0002&rft.eissn=1743-2928&rft_id=info:doi/10.1179/135100009X392449&rft_dat=%3Cproquest_hal_p%3E66849402%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66849402&rft_id=info:pmid/19161675&rfr_iscdi=true |