A machine-learning approach to the prediction of oxidative stress in chronic inflammatory disease
Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here,...
Gespeichert in:
Veröffentlicht in: | Redox report : communications in free radical research 2009, Vol.14 (1), p.23-33 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative stress is implicated in the development of a wide range of chronic human diseases, ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress results from a complex cascade of biochemical reactions, its quantitative prediction remains incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers in blood, plasma and urine, non-linear models have been designed, with a statistical methodology that includes variable selection, model training and model selection. Our data demonstrate that, despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in biological fluids can be predicted quantitatively from measured concentrations of a limited number of exogenous and endogenous antioxidants. |
---|---|
ISSN: | 1351-0002 1743-2928 |
DOI: | 10.1179/135100009X392449 |