Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population

Dicorynia guianensis is a canopy tree, endemic to the tropical rain forest of French Guiana. We compared generational and spatial genetic structure for maternally and biparentally inherited markers in two cohorts (adult and seedling) in order to infer processes shaping the distribution of genetic di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heredity 2003-08, Vol.91 (2), p.181-190
Hauptverfasser: Latouche-Hallé, C, Ramboer, A, Bandou, E, Caron, H, Kremer, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dicorynia guianensis is a canopy tree, endemic to the tropical rain forest of French Guiana. We compared generational and spatial genetic structure for maternally and biparentally inherited markers in two cohorts (adult and seedling) in order to infer processes shaping the distribution of genetic diversity. The study was conducted on a 40 ha study plot located at Paracou near Kourou, where 172 adults trees and 375 saplings were sampled. Aggregation of trees was therefore suggested at different distances, ranging from 100 to 400 m. There was a strong link between demographic and genetic spatial structures at small distances (less than 100 m) that is likely to be the consequence of restricted seed dispersal. Genetic differentiation was more pronounced between spatial aggregates than between cohorts. Despite the spatial differentiation, the species was able to maintain high levels of diversity for maternal genomes, suggesting rapid turnover of aggregates. Spatial autocorrelation was larger for chloroplast than nuclear markers indicating a strong asymmetry between pollen and seed flow. Fixation indices indicated a lower heterozygote deficiency for the adults, maybe because of gradual elimination of selfed trees. Genetic relatedness at lower distances was higher in adult trees than in saplings, as a result of generation overlapping in the adult cohort. Overall, our results confirm earlier biological knowledge about the dispersion mechanisms of the species, and lead to an enhanced role of spatial processes in the dynamics of genetic diversity of D. guianensis.
ISSN:0018-067X
1365-2540
0018-067X
DOI:10.1038/sj.hdy.6800296