The flow-induced instability of long hanging pipes

The effect of increasing length on the stability of a hanging fluid-conveying pipe is investigated. Experiments show that there exists a critical length above which the flow velocity necessary to cause flutter becomes independent of the pipe length. The fluid-structure interaction is thus modelled b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2002, Vol.21 (5), p.857-867
Hauptverfasser: Doaré, Olivier, de Langre, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of increasing length on the stability of a hanging fluid-conveying pipe is investigated. Experiments show that there exists a critical length above which the flow velocity necessary to cause flutter becomes independent of the pipe length. The fluid-structure interaction is thus modelled by following the work of Bourrières and of Paı̈doussis. Computations using a standard Galerkin method confirm this evolution. A short pipe model is then considered, where gravity plays a negligible role. Transition between this short length model and the asymptotic situation is found to occur where a local stability criterion is satisfied at the upstream end of the pipe. For longer pipes, a model is proposed where the zone of stable waves is totally disregarded. Comparison of these models with experiments and computations show a good agreement over all ranges of mass ratios between the flowing fluid and the pipe.
ISSN:0997-7538
1873-7285
DOI:10.1016/S0997-7538(02)01221-4