Lifting Artin–Schreier covers with maximal wild monodromy

Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2014, Vol.143 (1-2), p.253-271
1. Verfasser: Chrétien, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 1-2
container_start_page 253
container_title Manuscripta mathematica
container_volume 143
creator Chrétien, P.
description Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by w p − w = t R ( t ) for any additive polynomial R ( t ). One gives further informations about the ramification filtration of the monodromy extension and in the case when p = 2, one computes the conductor exponent f (Jac( C )/ K ) and the Swan conductor sw(Jac( C )/ K ).
doi_str_mv 10.1007/s00229-013-0636-8
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01017418v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01017418v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLtuXURvkjY_uBoGdYSCC3UdYtpMO7SNJOPo7HwH39AnMaXiUgic5N7zXXIPQucELgmAuIoAlCoMhGHgjGN5gGYkZxQTIYtDNEvtAlNOyDE6iXEDkJqCzdB12bptO6yzRUjy_fn1aJtQt3XIrN_VIWbv7bbJevPR9qZLj67Kej_4Kvh-f4qOnOliffarc_R8e_O0XOHy4e5-uSixpSLfYl7kRgKj0lhhhFCqcorQQkhVOFsproC7nFJbWe5eoBBMUZkOrca7VDmbo4tpbmM6_RrST8Jee9Pq1aLUYw0IEJETuSPJSyavDT7GULs_gIAek9JTUolhekxKy8TQiYnJO6zroDf-LQxppX-gHyPyaj0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><source>Springer Nature - Complete Springer Journals</source><creator>Chrétien, P.</creator><creatorcontrib>Chrétien, P.</creatorcontrib><description>Let k be an algebraically closed field of characteristic p &gt; 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by w p − w = t R ( t ) for any additive polynomial R ( t ). One gives further informations about the ramification filtration of the monodromy extension and in the case when p = 2, one computes the conductor exponent f (Jac( C )/ K ) and the Swan conductor sw(Jac( C )/ K ).</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-013-0636-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2014, Vol.143 (1-2), p.253-271</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-013-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-013-0636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01017418$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrétien, P.</creatorcontrib><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Let k be an algebraically closed field of characteristic p &gt; 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by w p − w = t R ( t ) for any additive polynomial R ( t ). One gives further informations about the ramification filtration of the monodromy extension and in the case when p = 2, one computes the conductor exponent f (Jac( C )/ K ) and the Swan conductor sw(Jac( C )/ K ).</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLtuXURvkjY_uBoGdYSCC3UdYtpMO7SNJOPo7HwH39AnMaXiUgic5N7zXXIPQucELgmAuIoAlCoMhGHgjGN5gGYkZxQTIYtDNEvtAlNOyDE6iXEDkJqCzdB12bptO6yzRUjy_fn1aJtQt3XIrN_VIWbv7bbJevPR9qZLj67Kej_4Kvh-f4qOnOliffarc_R8e_O0XOHy4e5-uSixpSLfYl7kRgKj0lhhhFCqcorQQkhVOFsproC7nFJbWe5eoBBMUZkOrca7VDmbo4tpbmM6_RrST8Jee9Pq1aLUYw0IEJETuSPJSyavDT7GULs_gIAek9JTUolhekxKy8TQiYnJO6zroDf-LQxppX-gHyPyaj0</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Chrétien, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2014</creationdate><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><author>Chrétien, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrétien, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrétien, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifting Artin–Schreier covers with maximal wild monodromy</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2014</date><risdate>2014</risdate><volume>143</volume><issue>1-2</issue><spage>253</spage><epage>271</epage><pages>253-271</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Let k be an algebraically closed field of characteristic p &gt; 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by w p − w = t R ( t ) for any additive polynomial R ( t ). One gives further informations about the ramification filtration of the monodromy extension and in the case when p = 2, one computes the conductor exponent f (Jac( C )/ K ) and the Swan conductor sw(Jac( C )/ K ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-013-0636-8</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2014, Vol.143 (1-2), p.253-271
issn 0025-2611
1432-1785
language eng
recordid cdi_hal_primary_oai_HAL_hal_01017418v1
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
title Lifting Artin–Schreier covers with maximal wild monodromy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifting%20Artin%E2%80%93Schreier%20covers%20with%20maximal%20wild%20monodromy&rft.jtitle=Manuscripta%20mathematica&rft.au=Chr%C3%A9tien,%20P.&rft.date=2014&rft.volume=143&rft.issue=1-2&rft.spage=253&rft.epage=271&rft.pages=253-271&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-013-0636-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01017418v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true