Lifting Artin–Schreier covers with maximal wild monodromy
Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem f...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2014, Vol.143 (1-2), p.253-271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 1-2 |
container_start_page | 253 |
container_title | Manuscripta mathematica |
container_volume | 143 |
creator | Chrétien, P. |
description | Let
k
be an algebraically closed field of characteristic
p
> 0. We consider the problem of lifting
p
-cyclic covers of
P
k
1
as
p
-cyclic covers
C
of the projective line over some discrete valuation field
K
under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by
w
p
−
w
=
t R
(
t
) for any additive polynomial
R
(
t
). One gives further informations about the ramification filtration of the monodromy extension and in the case when
p
= 2, one computes the conductor exponent
f
(Jac(
C
)/
K
) and the Swan conductor sw(Jac(
C
)/
K
). |
doi_str_mv | 10.1007/s00229-013-0636-8 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01017418v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01017418v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLtuXURvkjY_uBoGdYSCC3UdYtpMO7SNJOPo7HwH39AnMaXiUgic5N7zXXIPQucELgmAuIoAlCoMhGHgjGN5gGYkZxQTIYtDNEvtAlNOyDE6iXEDkJqCzdB12bptO6yzRUjy_fn1aJtQt3XIrN_VIWbv7bbJevPR9qZLj67Kej_4Kvh-f4qOnOliffarc_R8e_O0XOHy4e5-uSixpSLfYl7kRgKj0lhhhFCqcorQQkhVOFsproC7nFJbWe5eoBBMUZkOrca7VDmbo4tpbmM6_RrST8Jee9Pq1aLUYw0IEJETuSPJSyavDT7GULs_gIAek9JTUolhekxKy8TQiYnJO6zroDf-LQxppX-gHyPyaj0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><source>Springer Nature - Complete Springer Journals</source><creator>Chrétien, P.</creator><creatorcontrib>Chrétien, P.</creatorcontrib><description>Let
k
be an algebraically closed field of characteristic
p
> 0. We consider the problem of lifting
p
-cyclic covers of
P
k
1
as
p
-cyclic covers
C
of the projective line over some discrete valuation field
K
under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by
w
p
−
w
=
t R
(
t
) for any additive polynomial
R
(
t
). One gives further informations about the ramification filtration of the monodromy extension and in the case when
p
= 2, one computes the conductor exponent
f
(Jac(
C
)/
K
) and the Swan conductor sw(Jac(
C
)/
K
).</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-013-0636-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2014, Vol.143 (1-2), p.253-271</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-013-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-013-0636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01017418$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrétien, P.</creatorcontrib><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Let
k
be an algebraically closed field of characteristic
p
> 0. We consider the problem of lifting
p
-cyclic covers of
P
k
1
as
p
-cyclic covers
C
of the projective line over some discrete valuation field
K
under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by
w
p
−
w
=
t R
(
t
) for any additive polynomial
R
(
t
). One gives further informations about the ramification filtration of the monodromy extension and in the case when
p
= 2, one computes the conductor exponent
f
(Jac(
C
)/
K
) and the Swan conductor sw(Jac(
C
)/
K
).</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLtuXURvkjY_uBoGdYSCC3UdYtpMO7SNJOPo7HwH39AnMaXiUgic5N7zXXIPQucELgmAuIoAlCoMhGHgjGN5gGYkZxQTIYtDNEvtAlNOyDE6iXEDkJqCzdB12bptO6yzRUjy_fn1aJtQt3XIrN_VIWbv7bbJevPR9qZLj67Kej_4Kvh-f4qOnOliffarc_R8e_O0XOHy4e5-uSixpSLfYl7kRgKj0lhhhFCqcorQQkhVOFsproC7nFJbWe5eoBBMUZkOrca7VDmbo4tpbmM6_RrST8Jee9Pq1aLUYw0IEJETuSPJSyavDT7GULs_gIAek9JTUolhekxKy8TQiYnJO6zroDf-LQxppX-gHyPyaj0</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Chrétien, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2014</creationdate><title>Lifting Artin–Schreier covers with maximal wild monodromy</title><author>Chrétien, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-654a80328ac7a7799df91257895fcd96906f422cdc6fb05739289282d05738943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrétien, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrétien, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifting Artin–Schreier covers with maximal wild monodromy</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2014</date><risdate>2014</risdate><volume>143</volume><issue>1-2</issue><spage>253</spage><epage>271</epage><pages>253-271</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Let
k
be an algebraically closed field of characteristic
p
> 0. We consider the problem of lifting
p
-cyclic covers of
P
k
1
as
p
-cyclic covers
C
of the projective line over some discrete valuation field
K
under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by
w
p
−
w
=
t R
(
t
) for any additive polynomial
R
(
t
). One gives further informations about the ramification filtration of the monodromy extension and in the case when
p
= 2, one computes the conductor exponent
f
(Jac(
C
)/
K
) and the Swan conductor sw(Jac(
C
)/
K
).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-013-0636-8</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2014, Vol.143 (1-2), p.253-271 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01017418v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Number Theory Topological Groups |
title | Lifting Artin–Schreier covers with maximal wild monodromy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifting%20Artin%E2%80%93Schreier%20covers%20with%20maximal%20wild%20monodromy&rft.jtitle=Manuscripta%20mathematica&rft.au=Chr%C3%A9tien,%20P.&rft.date=2014&rft.volume=143&rft.issue=1-2&rft.spage=253&rft.epage=271&rft.pages=253-271&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-013-0636-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01017418v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |