Lifting Artin–Schreier covers with maximal wild monodromy

Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2014, Vol.143 (1-2), p.253-271
1. Verfasser: Chrétien, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by w p − w = t R ( t ) for any additive polynomial R ( t ). One gives further informations about the ramification filtration of the monodromy extension and in the case when p = 2, one computes the conductor exponent f (Jac( C )/ K ) and the Swan conductor sw(Jac( C )/ K ).
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-013-0636-8