Lifting Artin–Schreier covers with maximal wild monodromy
Let k be an algebraically closed field of characteristic p > 0. We consider the problem of lifting p -cyclic covers of P k 1 as p -cyclic covers C of the projective line over some discrete valuation field K under the condition that the wild monodromy is maximal. We answer positively the problem f...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2014, Vol.143 (1-2), p.253-271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k
be an algebraically closed field of characteristic
p
> 0. We consider the problem of lifting
p
-cyclic covers of
P
k
1
as
p
-cyclic covers
C
of the projective line over some discrete valuation field
K
under the condition that the wild monodromy is maximal. We answer positively the problem for covers birationally given by
w
p
−
w
=
t R
(
t
) for any additive polynomial
R
(
t
). One gives further informations about the ramification filtration of the monodromy extension and in the case when
p
= 2, one computes the conductor exponent
f
(Jac(
C
)/
K
) and the Swan conductor sw(Jac(
C
)/
K
). |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-013-0636-8 |