Compactness results in Symplectic Field Theory
This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [Y Eliashberg, A Givental and H Hofer, Introduction to Symplectic Field Theory, Geom. Funct. Anal. Special Volume, Part II (2000) 560--673]. We prove compactness results for moduli spaces of holomorph...
Gespeichert in:
Veröffentlicht in: | Geometry & topology 2003-12, Vol.7 (2), p.799-888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [Y Eliashberg, A Givental and H Hofer, Introduction to Symplectic Field Theory, Geom. Funct. Anal. Special Volume, Part II (2000) 560--673]. We prove compactness results for moduli spaces of holomorphic curves arising in Symplectic Field Theory. The theorems generalize Gromov's compactness theorem in [M Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307--347] as well as compactness theorems in Floer homology theory, [A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775--813 and Morse theory for Lagrangian intersections, J. Diff. Geom. 28 (1988) 513--547], and in contact geometry, [H Hofer, Pseudo-holomorphic curves and Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 307--347 and H Hofer, K Wysocki and E Zehnder, Foliations of the Tight Three Sphere, Annals of Mathematics, 157 (2003) 125--255]. |
---|---|
ISSN: | 1465-3060 1364-0380 |
DOI: | 10.2140/gt.2003.7.799 |