Bending and buckling of inflatable beams: Some new theoretical results

The non-linear and linearized equations are derived for the in-plane stretching and bending of thin-walled cylindrical beams made of a membrane and inflated by an internal pressure. The Timoshenko beam model combined with the finite rotation kinematics enables one to correctly account for the shear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin-walled structures 2005-08, Vol.43 (8), p.1166-1187
Hauptverfasser: Le van, A., Wielgosz, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-linear and linearized equations are derived for the in-plane stretching and bending of thin-walled cylindrical beams made of a membrane and inflated by an internal pressure. The Timoshenko beam model combined with the finite rotation kinematics enables one to correctly account for the shear effect and all the non-linear terms in the governing equations. The linearization is carried out around a pre-stressed reference configuration which has to be defined as opposed to the so-called natural state. Two examples are then investigated: the bending and the buckling of a cantilever beam. Their analytical solutions show that the inflation has the effect of increasing the material properties in the beam solution. This solution is compared with the three-dimensional finite element analysis, as well as the so-called wrinkling pressure for the bent beam and the crushing force for the buckled beam. New theoretical and numerical results on the buckling of inflatable beams are displayed.
ISSN:0263-8231
1879-3223
DOI:10.1016/j.tws.2005.03.005