Non‐random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization

Summary Chromosome rearrangements are common, but their dynamics over time, mechanisms of occurrence and the genomic features that shape their distribution and rate are still poorly understood. We used allohaploid Brassica napus (AC, n = 19) as a model to analyze the effect of genomic features on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-05, Vol.70 (4), p.691-703
Hauptverfasser: Nicolas, Stéphane D., Monod, Hervé, Eber, Frédérique, Chèvre, Anne‐Marie, Jenczewski, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Chromosome rearrangements are common, but their dynamics over time, mechanisms of occurrence and the genomic features that shape their distribution and rate are still poorly understood. We used allohaploid Brassica napus (AC, n = 19) as a model to analyze the effect of genomic features on the formation and diversity of meiotically driven chromosome rearrangements. We showed that allohaploid B. napus meiosis leads to extensive new structural diversity. Almost every allohaploid offspring carried a unique combination of multiple rearrangements throughout the genome, and was thus structurally differentiated from both its haploid parent and its sister plants. This large amount of genome reshuffling was remarkably well‐tolerated in the heterozygous state, as neither male nor female fertility were strongly reduced, and meiosis behavior was normal in most cases. We also used a quantitative statistical model, which accounted for 75% of the observed variation in rearrangement rates, to show that the distribution of meiotically driven chromosome rearrangements was not random but was shaped by three principal genomic features. In descending order of importance, the rate of marker loss increased strongly with genetic distance from the centromere, the degree of collinearity between chromosomes, and the genome of origin (A 
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2012.04914.x