Deer-mediated expansion of a rare plant species

Numerous plant colonizations have been putatively attributed to deer, based on plant species traits, fur brushing or dung analyses. But, in woodlands, direct links between the expansion of zoochorous plant species and ungulate presence have seldom been reported. Based on coupled floristic and browsi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant ecology 2011-02, Vol.212 (2), p.307-314
Hauptverfasser: Boulanger, Vincent, Baltzinger, Christophe, Saïd, Sonia, Ballon, Philippe, Ningre, François, Picard, Jean-François, Dupouey, Jean-Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous plant colonizations have been putatively attributed to deer, based on plant species traits, fur brushing or dung analyses. But, in woodlands, direct links between the expansion of zoochorous plant species and ungulate presence have seldom been reported. Based on coupled floristic and browsing surveys, repeated in time, we analysed the causes of the spatio-temporal progression of the epizoochorous species Cynoglossum germanicum over 30 years in a network covering an 11000 ha forested area in north-eastern France. In this area, deer populations reached a peak in the 1970s, then were reduced in order to meet forest management requirements. Although initially rare and protected locally, C. germanicum has displayed an unexpected fast colonization rate during the last few decades but only in the northern part of the forest, which previously had the highest animal populations. Absent in the initial 1976 survey, C. germanicum occurred in 8% of the plots in 1981, then 46% in 2006. Logistic regression models revealed that the probability of occurrence of C. germanicum in 2006 increased not only with light indicator values, in accordance with its ecological requirements, but also with past deer browsing pressure. This result provides direct evidence of long-lasting impacts of deer populations on plant species distribution. Combining two complementary traits, animal transport and herbivory avoidance, C. germanicum benefited from epizoochorous dispersal and, once established, was protected from deer browsing by the presence of toxic proteins in its tissues. Due to the triggering role of ungulates, this species switched from the status of rare to that of colonizer within only a few decades.
ISSN:1385-0237
1573-5052
DOI:10.1007/s11258-010-9823-9