Non-degenerate singularities of integrable dynamical systems

We give a natural notion of non-degeneracy for singular points of integrable non-Hamiltonian systems, and show that such non-degenerate singularities are locally geometrically linearizable and deformation rigid in the analytic case. We conjecture that the same result also holds in the smooth case, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2015-05, Vol.35 (3), p.994-1008
1. Verfasser: ZUNG, NGUYEN TIEN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a natural notion of non-degeneracy for singular points of integrable non-Hamiltonian systems, and show that such non-degenerate singularities are locally geometrically linearizable and deformation rigid in the analytic case. We conjecture that the same result also holds in the smooth case, and prove this conjecture for systems of type $(n, 0)$, i.e. $n$ commuting smooth vector fields on an $n$-manifold.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2013.65