Motion of a solid particle in a shear flow along a porous slab

The flow field around a solid particle moving in a shear flow along a porous slab is obtained by solving the coupled Stokes–Darcy problem with the Beavers and Joseph slip boundary condition on the slab interfaces. The solution involves the Green’s function of this coupled problem, which is given her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2012-12, Vol.713, p.271-306
Hauptverfasser: Khabthani, Sondes, Sellier, Antoine, Elasmi, Lassaad, Feuillebois, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow field around a solid particle moving in a shear flow along a porous slab is obtained by solving the coupled Stokes–Darcy problem with the Beavers and Joseph slip boundary condition on the slab interfaces. The solution involves the Green’s function of this coupled problem, which is given here. It is shown that the classical boundary integral method using this Green’s function is inappropriate because of supplementary contributions due to the slip on the slab interfaces. An ‘indirect boundary integral method’ is therefore proposed, in which the unknown density on the particle surface is not the actual stress, but yet allows calculation of the force and torque on the particle. Various results are provided for the normalized force and torque, namely friction factors, on the particle. The cases of a sphere and an ellipsoid are considered. It is shown that the relationships between friction coefficients (torque due to rotation and force due to translation) that are classical for a no-slip plane do not apply here. This difference is exhibited. Finally, results for the velocity of a freely moving particle in a linear and a quadratic shear flow are presented, for both a sphere and an ellipsoid.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2012.457