A discontinuous Galerkin method for a model arising from stratigraphy

We investigate a mathematical problem arising from the modeling of maximal erosion rates in geological stratigraphy. A global constraint on ∂tu, the time-derivative of the solution, is the main feature of this model. This leads to a nonlinear pseudoparabolic equation with a diffusion coefficient whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2014-04, Vol.78, p.68-79
Hauptverfasser: Becker, Roland, Vallet, Guy, Taakili, Abdelaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a mathematical problem arising from the modeling of maximal erosion rates in geological stratigraphy. A global constraint on ∂tu, the time-derivative of the solution, is the main feature of this model. This leads to a nonlinear pseudoparabolic equation with a diffusion coefficient which is a nonlinear function of ∂tu. Moreover, the problem degenerates in order to take implicitly into account the constraint. In this paper, we develop a numerical scheme based on the discontinuous Galerkin finite element method (DgFem) for its numerical approximation. With a particular choice of the flux at the interface, we prove that the constraint is implicitly satisfied by using piecewise constant approximation. This is confirmed by some numerical experiments.
ISSN:0168-9274
1873-5460
0168-9274
DOI:10.1016/j.apnum.2013.06.010