Formation of the highest sand dunes on Earth

Characterization of dune morphology has historically been based on relationships between dune forms and wind regimes with dune height shown to be sensitive to atmospheric boundary layer depth, sand availability and sediment properties. While these parameters have been used in numerical simulations t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2011-12, Vol.135 (1), p.108-116
Hauptverfasser: Yang, Xiaoping, Scuderi, Louis, Liu, Tao, Paillou, Philippe, Li, Hongwei, Dong, Jufeng, Zhu, Bingqi, Jiang, Weiwei, Jochems, Andrew, Weissmann, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterization of dune morphology has historically been based on relationships between dune forms and wind regimes with dune height shown to be sensitive to atmospheric boundary layer depth, sand availability and sediment properties. While these parameters have been used in numerical simulations to model the occurrences of some types of dunes, they cannot alone explain the great diversity in form and size seen on Earth and on other solar system bodies. Here we present results from our studies of dune formation in the Badain Jaran Desert in western China, where Earth's tallest dunes occur. We measured the variability of the dune morphology in this desert on the basis of LANDSAT ETM+ data, and we detected the bedrock landforms beneath the aeolian sands by applying gravity methods. Wind records from stations at the periphery of the desert and SRTM topographical data were examined also to augment the interpretation. Our studies demonstrate that in addition to average wind parameters, dune height is highly sensitive to local geology, subsurface characteristics, and topography, and interactions between changing climate conditions and aeolian and fluvial processes. These additional factors need to be considered in the interpretation and simulation of dunes on Earth. We anticipate that analysis of anomalous dune heights like those seen in the Badain Jaran may also provide critical information on subsurface characteristics and environmental conditions on Earth and on other planetary bodies. ► Discovers the mysteries of the occurrence of the tallest dunes on Earth. ► Uses research methods in geology, geophysics, climatology, remote sensing and GIS. ► Shows dune landscape facing degradation due to the increase of human impact.
ISSN:0169-555X
1872-695X
DOI:10.1016/j.geomorph.2011.08.008