Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys
We discuss a model for the onsite matrix elements of the sp3d5s tight-binding Hamiltonian of a strained diamond or zinc-blende crystal or nanostructure. This model features onsite, off-diagonal couplings among the s, p, and d orbitals and is able to reproduce the effects of arbitrary strains on the...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2009-06, Vol.79 (24), Article 245201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss a model for the onsite matrix elements of the sp3d5s tight-binding Hamiltonian of a strained diamond or zinc-blende crystal or nanostructure. This model features onsite, off-diagonal couplings among the s, p, and d orbitals and is able to reproduce the effects of arbitrary strains on the band energies and effective masses in the full Brillouin zone. It introduces only a few additional parameters and is free from any ambiguities that might arise from the definition of the macroscopic strains as a function of the atomic positions. We apply this model to silicon, germanium, and their alloys as an illustration. In particular, we make a detailed comparison of tight-binding and ab initio data on strained Si, Ge, and SiGe. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.79.245201 |