Structure−Properties Relationships of Lithium Electrolytes Based on Ionic Liquid

Low-melting ionic liquid, IL, based on small aliphatic quaternary ammonium cations ([R1R2R3NR]+, where R1, R2, R3 = CH3 or C2H5, R = C3H7, C4H9, C6H13, C8H17, CF3C3H6) and imide anion were prepared and characterized. The physicochemical and electrochemical properties of these ILs, including melting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2010-01, Vol.114 (2), p.894-903
Hauptverfasser: Le, My Loan Phung, Alloin, Fannie, Strobel, Pierre, Leprêtre, Jean-Claude, Pérez del Valle, Carlos, Judeinstein, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-melting ionic liquid, IL, based on small aliphatic quaternary ammonium cations ([R1R2R3NR]+, where R1, R2, R3 = CH3 or C2H5, R = C3H7, C4H9, C6H13, C8H17, CF3C3H6) and imide anion were prepared and characterized. The physicochemical and electrochemical properties of these ILs, including melting point, glass transition, and degradation temperatures; viscosity; density; ionic conductivity; diffusion coefficient; and electrochemical stability, were determined. Heteronuclear Overhauser NMR spectroscopy experiments were also performed to point out the presence of pair correlation between the different moieties. The LiTFSI addition effect on the IL properties was studied with the same methodology. Some nanoscale organization with segregation of polar and apolar domains was observed. ILs with small alkyl chain length or fluorinated ammonium exhibit very high electrochemical stability in oxidation.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp9098842