Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition

The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-01, Vol.110 (3), p.037401-037401
Hauptverfasser: Ta Phuoc, V, Vaju, C, Corraze, B, Sopracase, R, Perucchi, A, Marini, C, Postorino, P, Chligui, M, Lupi, S, Janod, E, Cario, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.110.037401