A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain
[Display omitted] •We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2014-01, Vol.18 (1), p.144-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | Medical image analysis |
container_volume | 18 |
creator | Frindel, Carole Robini, Marc C. Rousseau, David |
description | [Display omitted]
•We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both synthetic and real data.•The validation of the proposed approach was carried out at each step of the PWI processing pipeline.
We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches—namely, temporal deconvolution based on either truncated singular-value decomposition or ℓ2-regularization—in terms of various performance measures. |
doi_str_mv | 10.1016/j.media.2013.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00977610v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841513001485</els_id><sourcerecordid>1461881503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d748822c9b56169cde0d78b0163dcd644d13f36a3cd5f0284c9e55df96303e073</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpyFfzCwpFx_bgzciSZfvQw7JNui0bAiU5C600ZrV4LVeyF_LvI8fpHnuSeOeZGeYh5DODBQMmb_eLA1qnFzkwnpIFgPhALhmXLKtEzj-e_qy4IFcx7gGgFALOyUUuWCWKvLgkv5eUZz9o7PXgfDbgofdBt9Si8d3Rt2NKO6r7PnhtdrTxgT78oT2GZoxTxXV02CHdBu26T-Ss0W3Em_f3mjzf3z2t1tnm8eev1XKTGV7zIbOlqKo8N_W2kEzWxiLYstqmi7g1VgphGW-41NzYooG8EqbGorBNLTlwhJJfk2_z3J1uVR_cQYcX5bVT6-VGTRlAXZaSwZEl9uvMpgP-jhgHdXDRYNvqDv0YFROSVRUrgCeUz6gJPsaAzWk2AzUJV3v1JlxNwqcwCU9dX94XjNtUPfX8M5yA7zOAScnRYVDROOxMmhTQDMp6998Fr3qkj88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461881503</pqid></control><display><type>article</type><title>A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Frindel, Carole ; Robini, Marc C. ; Rousseau, David</creator><creatorcontrib>Frindel, Carole ; Robini, Marc C. ; Rousseau, David</creatorcontrib><description>[Display omitted]
•We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both synthetic and real data.•The validation of the proposed approach was carried out at each step of the PWI processing pipeline.
We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches—namely, temporal deconvolution based on either truncated singular-value decomposition or ℓ2-regularization—in terms of various performance measures.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2013.10.004</identifier><identifier>PMID: 24184525</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acute stroke ; Algorithms ; Artificial Intelligence ; Blood Flow Velocity ; Brain Ischemia - diagnosis ; Brain Ischemia - physiopathology ; Cerebrovascular Circulation ; Deconvolution ; Engineering Sciences ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Magnetic Resonance Angiography - methods ; Pattern Recognition, Automated - methods ; Perfusion weighted MRI ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and Image processing ; Spatio-Temporal Analysis ; Spatio-temporal model ; Tissue outcome prediction</subject><ispartof>Medical image analysis, 2014-01, Vol.18 (1), p.144-160</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d748822c9b56169cde0d78b0163dcd644d13f36a3cd5f0284c9e55df96303e073</citedby><cites>FETCH-LOGICAL-c393t-d748822c9b56169cde0d78b0163dcd644d13f36a3cd5f0284c9e55df96303e073</cites><orcidid>0000-0001-7613-8063 ; 0000-0002-7317-9641 ; 0000-0003-4570-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2013.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24184525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00977610$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frindel, Carole</creatorcontrib><creatorcontrib>Robini, Marc C.</creatorcontrib><creatorcontrib>Rousseau, David</creatorcontrib><title>A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted]
•We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both synthetic and real data.•The validation of the proposed approach was carried out at each step of the PWI processing pipeline.
We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches—namely, temporal deconvolution based on either truncated singular-value decomposition or ℓ2-regularization—in terms of various performance measures.</description><subject>Acute stroke</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Blood Flow Velocity</subject><subject>Brain Ischemia - diagnosis</subject><subject>Brain Ischemia - physiopathology</subject><subject>Cerebrovascular Circulation</subject><subject>Deconvolution</subject><subject>Engineering Sciences</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Perfusion weighted MRI</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and Image processing</subject><subject>Spatio-Temporal Analysis</subject><subject>Spatio-temporal model</subject><subject>Tissue outcome prediction</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVpyFfzCwpFx_bgzciSZfvQw7JNui0bAiU5C600ZrV4LVeyF_LvI8fpHnuSeOeZGeYh5DODBQMmb_eLA1qnFzkwnpIFgPhALhmXLKtEzj-e_qy4IFcx7gGgFALOyUUuWCWKvLgkv5eUZz9o7PXgfDbgofdBt9Si8d3Rt2NKO6r7PnhtdrTxgT78oT2GZoxTxXV02CHdBu26T-Ss0W3Em_f3mjzf3z2t1tnm8eev1XKTGV7zIbOlqKo8N_W2kEzWxiLYstqmi7g1VgphGW-41NzYooG8EqbGorBNLTlwhJJfk2_z3J1uVR_cQYcX5bVT6-VGTRlAXZaSwZEl9uvMpgP-jhgHdXDRYNvqDv0YFROSVRUrgCeUz6gJPsaAzWk2AzUJV3v1JlxNwqcwCU9dX94XjNtUPfX8M5yA7zOAScnRYVDROOxMmhTQDMp6998Fr3qkj88</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Frindel, Carole</creator><creator>Robini, Marc C.</creator><creator>Rousseau, David</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7613-8063</orcidid><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0003-4570-0994</orcidid></search><sort><creationdate>201401</creationdate><title>A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain</title><author>Frindel, Carole ; Robini, Marc C. ; Rousseau, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d748822c9b56169cde0d78b0163dcd644d13f36a3cd5f0284c9e55df96303e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acute stroke</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Blood Flow Velocity</topic><topic>Brain Ischemia - diagnosis</topic><topic>Brain Ischemia - physiopathology</topic><topic>Cerebrovascular Circulation</topic><topic>Deconvolution</topic><topic>Engineering Sciences</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Perfusion weighted MRI</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and Image processing</topic><topic>Spatio-Temporal Analysis</topic><topic>Spatio-temporal model</topic><topic>Tissue outcome prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frindel, Carole</creatorcontrib><creatorcontrib>Robini, Marc C.</creatorcontrib><creatorcontrib>Rousseau, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frindel, Carole</au><au>Robini, Marc C.</au><au>Rousseau, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2014-01</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>144</spage><epage>160</epage><pages>144-160</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted]
•We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both synthetic and real data.•The validation of the proposed approach was carried out at each step of the PWI processing pipeline.
We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches—namely, temporal deconvolution based on either truncated singular-value decomposition or ℓ2-regularization—in terms of various performance measures.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24184525</pmid><doi>10.1016/j.media.2013.10.004</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7613-8063</orcidid><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0003-4570-0994</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2014-01, Vol.18 (1), p.144-160 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00977610v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acute stroke Algorithms Artificial Intelligence Blood Flow Velocity Brain Ischemia - diagnosis Brain Ischemia - physiopathology Cerebrovascular Circulation Deconvolution Engineering Sciences Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Angiography - methods Pattern Recognition, Automated - methods Perfusion weighted MRI Reproducibility of Results Sensitivity and Specificity Signal and Image processing Spatio-Temporal Analysis Spatio-temporal model Tissue outcome prediction |
title | A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203-D%20spatio-temporal%20deconvolution%20approach%20for%20MR%20perfusion%20in%20the%20brain&rft.jtitle=Medical%20image%20analysis&rft.au=Frindel,%20Carole&rft.date=2014-01&rft.volume=18&rft.issue=1&rft.spage=144&rft.epage=160&rft.pages=144-160&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2013.10.004&rft_dat=%3Cproquest_hal_p%3E1461881503%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461881503&rft_id=info:pmid/24184525&rft_els_id=S1361841513001485&rfr_iscdi=true |