A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain

[Display omitted] •We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2014-01, Vol.18 (1), p.144-160
Hauptverfasser: Frindel, Carole, Robini, Marc C., Rousseau, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •We propose a theoretically grounded spatio-temporal model for the PWI deconvolution problem.•We provide a globally convergent algorithm to solve the associated optimization problem.•We show that our approach outperforms the standard (temporal-only) deconvolution methods using both synthetic and real data.•The validation of the proposed approach was carried out at each step of the PWI processing pipeline. We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches—namely, temporal deconvolution based on either truncated singular-value decomposition or ℓ2-regularization—in terms of various performance measures.
ISSN:1361-8415
1361-8423
DOI:10.1016/j.media.2013.10.004