Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study
We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order ( 2 m ) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increa...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2010-07, Vol.234 (6), p.1953-1961 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order (
2
m
) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increases. We propose variants of these schemes constructed to optimize the CFL condition. The corresponding optimization problem is analyzed in detail. The optimal schemes are validated through various numerical results. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2009.08.046 |