X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components

Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2014-04, Vol.15 (5), p.894-904
Hauptverfasser: Patel, Manu U. M., Arčon, Iztok, Aquilanti, Giuliana, Stievano, Lorenzo, Mali, Gregor, Dominko, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries. Battery operation: X‐ray absorption spectroscopy (XAS) and Li magic‐angle spinning nuclear magnetic resonance (NMR) spectroscopy allow the quantitative determination of intermediate species during the discharge and charge processes of Li–S batteries (see figure). NMR can distinguish between soluble and insoluble polysulfides, and XAS confirms the mobility of polysulfides. Both techniques provide information on the mechanisms during battery operation.
ISSN:1439-4235
1439-7641
DOI:10.1002/cphc.201300972