Topological and shape gradient strategy for solving geometrical inverse problems
In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2013-04, Vol.400 (2), p.724-742 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 2 |
container_start_page | 724 |
container_title | Journal of mathematical analysis and applications |
container_volume | 400 |
creator | Chaabane, S. Masmoudi, M. Meftahi, H. |
description | In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm. |
doi_str_mv | 10.1016/j.jmaa.2012.11.044 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00965553v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X12009596</els_id><sourcerecordid>oai_HAL_hal_00965553v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7c02e6397efd7b1583d9ce1816501cebd1e6ca0c19d158f264dcc03abb7bb59f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-5emjNpN_gZVnUFRb0sIK3kCbTbkrblKQU9t_buuLR08DM-wy8DyH3wEJgkD42YdNJGXIGPAQIWRxfkBWwIg1YDtElWTHGecDj7Oua3HjfMAaQZLAiHwc72NbWRsmWyl5Tf5QD0tpJbbAfqR-dHLE-0co66m07mb6mNdoOR_fDmH5C55EOzpYtdv6WXFWy9Xj3O9fk8-X5sN0F-_fXt-1mH6goy8cgU4xjGhUZVjorIckjXSiEHNKEgcJSA6ZKMgWFno8VT2OtFItkWWZlmRRVtCYP579H2YrBmU66k7DSiN1mL5Ydm9snSRJNMGf5Oauc9d5h9QcAE4s_0YjFn1j8CQAx-5uhpzOEc4vJoBNezUoUauNQjUJb8x_-DQxfenc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological and shape gradient strategy for solving geometrical inverse problems</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chaabane, S. ; Masmoudi, M. ; Meftahi, H.</creator><creatorcontrib>Chaabane, S. ; Masmoudi, M. ; Meftahi, H.</creatorcontrib><description>In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2012.11.044</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Inverse problem ; Shape gradient ; Topological asymptotic expansion ; Topological gradient</subject><ispartof>Journal of mathematical analysis and applications, 2013-04, Vol.400 (2), p.724-742</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7c02e6397efd7b1583d9ce1816501cebd1e6ca0c19d158f264dcc03abb7bb59f3</citedby><cites>FETCH-LOGICAL-c378t-7c02e6397efd7b1583d9ce1816501cebd1e6ca0c19d158f264dcc03abb7bb59f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X12009596$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00965553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaabane, S.</creatorcontrib><creatorcontrib>Masmoudi, M.</creatorcontrib><creatorcontrib>Meftahi, H.</creatorcontrib><title>Topological and shape gradient strategy for solving geometrical inverse problems</title><title>Journal of mathematical analysis and applications</title><description>In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm.</description><subject>Inverse problem</subject><subject>Shape gradient</subject><subject>Topological asymptotic expansion</subject><subject>Topological gradient</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-5emjNpN_gZVnUFRb0sIK3kCbTbkrblKQU9t_buuLR08DM-wy8DyH3wEJgkD42YdNJGXIGPAQIWRxfkBWwIg1YDtElWTHGecDj7Oua3HjfMAaQZLAiHwc72NbWRsmWyl5Tf5QD0tpJbbAfqR-dHLE-0co66m07mb6mNdoOR_fDmH5C55EOzpYtdv6WXFWy9Xj3O9fk8-X5sN0F-_fXt-1mH6goy8cgU4xjGhUZVjorIckjXSiEHNKEgcJSA6ZKMgWFno8VT2OtFItkWWZlmRRVtCYP579H2YrBmU66k7DSiN1mL5Ydm9snSRJNMGf5Oauc9d5h9QcAE4s_0YjFn1j8CQAx-5uhpzOEc4vJoBNezUoUauNQjUJb8x_-DQxfenc</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Chaabane, S.</creator><creator>Masmoudi, M.</creator><creator>Meftahi, H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20130415</creationdate><title>Topological and shape gradient strategy for solving geometrical inverse problems</title><author>Chaabane, S. ; Masmoudi, M. ; Meftahi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7c02e6397efd7b1583d9ce1816501cebd1e6ca0c19d158f264dcc03abb7bb59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Inverse problem</topic><topic>Shape gradient</topic><topic>Topological asymptotic expansion</topic><topic>Topological gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaabane, S.</creatorcontrib><creatorcontrib>Masmoudi, M.</creatorcontrib><creatorcontrib>Meftahi, H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaabane, S.</au><au>Masmoudi, M.</au><au>Meftahi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological and shape gradient strategy for solving geometrical inverse problems</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2013-04-15</date><risdate>2013</risdate><volume>400</volume><issue>2</issue><spage>724</spage><epage>742</epage><pages>724-742</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2012.11.044</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2013-04, Vol.400 (2), p.724-742 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00965553v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Inverse problem Shape gradient Topological asymptotic expansion Topological gradient |
title | Topological and shape gradient strategy for solving geometrical inverse problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20and%20shape%20gradient%20strategy%20for%20solving%20geometrical%20inverse%20problems&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Chaabane,%20S.&rft.date=2013-04-15&rft.volume=400&rft.issue=2&rft.spage=724&rft.epage=742&rft.pages=724-742&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2012.11.044&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00965553v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X12009596&rfr_iscdi=true |