Topological and shape gradient strategy for solving geometrical inverse problems

In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2013-04, Vol.400 (2), p.724-742
Hauptverfasser: Chaabane, S., Masmoudi, M., Meftahi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2012.11.044