Topological and shape gradient strategy for solving geometrical inverse problems
In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2013-04, Vol.400 (2), p.724-742 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a technique for shape reconstruction based on the topological and shape gradients. The shape in consideration is a solution of an inverse conductivity problem. To solve such a problem numerically, we compute the topological gradient of a Kohn–Vogelius-type cost function when the domain under consideration is perturbed by the introduction of a small inclusion instead of a hole. The reconstruction is done by considering the shape as a superposition of very thin elliptic inclusions to get a first approximation. Then, we use a gradient-type algorithm to perform a good reconstruction. Various numerical experiments of single and multiple inclusions demonstrate the viability of the designed algorithm. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2012.11.044 |