On a second conjecture of Stolarsky: the sum of digits of polynomial values
Let q , r ≥ 2 be integers, and denote by s q the sum-of-digits function in base q . In 1978, K.B. Stolarsky conjectured that lim N → ∞ 1 N ∑ n ≤ N s 2 ( n r ) s 2 ( n ) ≤ r . In this paper we prove this conjecture. We show that for polynomials P 1 ( X ) , P 2 ( X ) ∈ Z [ X ] of degrees r 1 , r 2 ≥ 1...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2014-01, Vol.102 (1), p.49-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
q
,
r
≥ 2 be integers, and denote by
s
q
the sum-of-digits function in base
q
. In 1978, K.B. Stolarsky conjectured that
lim
N
→
∞
1
N
∑
n
≤
N
s
2
(
n
r
)
s
2
(
n
)
≤
r
.
In this paper we prove this conjecture. We show that for polynomials
P
1
(
X
)
,
P
2
(
X
)
∈
Z
[
X
]
of degrees
r
1
,
r
2
≥ 1 and integers
q
1
,
q
2
≥ 2, we have
lim
N
→
∞
1
N
∑
n
≤
N
s
q
1
(
P
1
(
n
)
)
s
q
2
(
P
2
(
n
)
)
=
r
1
(
q
1
-
1
)
log
q
2
r
2
(
q
2
-
1
)
log
q
1
.
We also present a variant of the problem to polynomial values of prime numbers. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-013-0587-z |