An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields
Let ζ k be a k -th primitive root of unity, m ≥ø( k ) + 1 an integer and Φ k ( X ) ∈ ℤ[ X ] the k -th cyclotomic polynomial. In this paper we show that the pair (- m +ζ k , N ) is a canonical number system, with N = {0,1,...,|Φ k ( m )|-1}. Moreover we also discuss whether the two bases - m + ζ k an...
Gespeichert in:
Veröffentlicht in: | Acta scientiarum mathematicarum (Szeged) 2015-01, Vol.81 (1-2), p.33-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ζ
k
be a
k
-th primitive root of unity,
m
≥ø(
k
) + 1 an integer and Φ
k
(
X
) ∈ ℤ[
X
] the
k
-th cyclotomic polynomial. In this paper we show that the pair (-
m
+ζ
k
,
N
) is a canonical number system, with
N
= {0,1,...,|Φ
k
(
m
)|-1}. Moreover we also discuss whether the two bases -
m
+ ζ
k
and -
n
+ ζ
k
are multiplicatively independent for positive integers
m
,
n
and
k
fixed. |
---|---|
ISSN: | 0001-6969 2064-8316 |
DOI: | 10.14232/actasm-013-825-5 |