An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields

Let ζ k be a k -th primitive root of unity, m ≥ø( k ) + 1 an integer and Φ k ( X ) ∈ ℤ[ X ] the k -th cyclotomic polynomial. In this paper we show that the pair (- m +ζ k , N ) is a canonical number system, with N = {0,1,...,|Φ k ( m )|-1}. Moreover we also discuss whether the two bases - m + ζ k an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta scientiarum mathematicarum (Szeged) 2015-01, Vol.81 (1-2), p.33-44
Hauptverfasser: Madritsch, Manfred G., Ziegler, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ζ k be a k -th primitive root of unity, m ≥ø( k ) + 1 an integer and Φ k ( X ) ∈ ℤ[ X ] the k -th cyclotomic polynomial. In this paper we show that the pair (- m +ζ k , N ) is a canonical number system, with N = {0,1,...,|Φ k ( m )|-1}. Moreover we also discuss whether the two bases - m + ζ k and - n + ζ k are multiplicatively independent for positive integers m , n and k fixed.
ISSN:0001-6969
2064-8316
DOI:10.14232/actasm-013-825-5