Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing

We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765–792 2008 ). In the hyperbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2015-01, Vol.158 (1), p.1-36
Hauptverfasser: Joubaud, R., Pavliotis, G. A., Stoltz, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765–792 2008 ). In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level—a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-014-1118-4