Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies

We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2015-05, Vol.336 (1), p.441-507
Hauptverfasser: Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 1
container_start_page 441
container_title Communications in mathematical physics
container_volume 336
creator Figalli, A.
Fusco, N.
Maggi, F.
Millot, V.
Morini, M.
description We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s -perimeter plus a non-local repulsive interaction term. In the particular case s  = 1, the s -perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66(7):1129–1162, 2013 ; Comm. Pure Appl. Math., 2014 ) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.
doi_str_mv 10.1007/s00220-014-2244-1
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00955169v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00955169v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-6f4108240cc2ecfcc9c06f0d41c6ba5b3cc0ab333a2a35fea7b39964c37ad5093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFuuHqKTj02bYy3VFhYtfpxDNk3aLeumJFHpv3eXFY-eBmaeZ-B9EbqmcEsBJncJgDEgQAVhTAhCT9CICs4IKCpP0QiAAuGSynN0kdIeABSTcoTWqxQOLtYfLscjNu0Gv2ZT1U2dj3gd-1OuXcLB43vTNAl_13mHX1w6OJtxDvgptE2wpsGL1sVth16iM2-a5K5-5xi9Pyze5ktSPj-u5rOSWK6mmUgvKEyZAGuZs95aZUF62AhqZWWKilsLpuKcG2Z44Z2ZVFwpKSyfmE0Bio_RzfB3Zxp96AKYeNTB1Ho5K3W_6xIWBZXqi3YsHVgbQ0rR-T-Bgu7r00N9uqtP9_Xp3mGDkzq23bqo9-Eztl2kf6Qf70NynA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies</title><source>SpringerLink Journals</source><creator>Figalli, A. ; Fusco, N. ; Maggi, F. ; Millot, V. ; Morini, M.</creator><creatorcontrib>Figalli, A. ; Fusco, N. ; Maggi, F. ; Millot, V. ; Morini, M.</creatorcontrib><description>We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s -perimeter plus a non-local repulsive interaction term. In the particular case s  = 1, the s -perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66(7):1129–1162, 2013 ; Comm. Pure Appl. Math., 2014 ) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-014-2244-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Mathematics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2015-05, Vol.336 (1), p.441-507</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-6f4108240cc2ecfcc9c06f0d41c6ba5b3cc0ab333a2a35fea7b39964c37ad5093</citedby><cites>FETCH-LOGICAL-c398t-6f4108240cc2ecfcc9c06f0d41c6ba5b3cc0ab333a2a35fea7b39964c37ad5093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-014-2244-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-014-2244-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-00955169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Fusco, N.</creatorcontrib><creatorcontrib>Maggi, F.</creatorcontrib><creatorcontrib>Millot, V.</creatorcontrib><creatorcontrib>Morini, M.</creatorcontrib><title>Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s -perimeter plus a non-local repulsive interaction term. In the particular case s  = 1, the s -perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66(7):1129–1162, 2013 ; Comm. Pure Appl. Math., 2014 ) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.</description><subject>Analysis of PDEs</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFuuHqKTj02bYy3VFhYtfpxDNk3aLeumJFHpv3eXFY-eBmaeZ-B9EbqmcEsBJncJgDEgQAVhTAhCT9CICs4IKCpP0QiAAuGSynN0kdIeABSTcoTWqxQOLtYfLscjNu0Gv2ZT1U2dj3gd-1OuXcLB43vTNAl_13mHX1w6OJtxDvgptE2wpsGL1sVth16iM2-a5K5-5xi9Pyze5ktSPj-u5rOSWK6mmUgvKEyZAGuZs95aZUF62AhqZWWKilsLpuKcG2Z44Z2ZVFwpKSyfmE0Bio_RzfB3Zxp96AKYeNTB1Ho5K3W_6xIWBZXqi3YsHVgbQ0rR-T-Bgu7r00N9uqtP9_Xp3mGDkzq23bqo9-Eztl2kf6Qf70NynA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Figalli, A.</creator><creator>Fusco, N.</creator><creator>Maggi, F.</creator><creator>Millot, V.</creator><creator>Morini, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150501</creationdate><title>Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies</title><author>Figalli, A. ; Fusco, N. ; Maggi, F. ; Millot, V. ; Morini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-6f4108240cc2ecfcc9c06f0d41c6ba5b3cc0ab333a2a35fea7b39964c37ad5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis of PDEs</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Fusco, N.</creatorcontrib><creatorcontrib>Maggi, F.</creatorcontrib><creatorcontrib>Millot, V.</creatorcontrib><creatorcontrib>Morini, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figalli, A.</au><au>Fusco, N.</au><au>Maggi, F.</au><au>Millot, V.</au><au>Morini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>336</volume><issue>1</issue><spage>441</spage><epage>507</epage><pages>441-507</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s -perimeter plus a non-local repulsive interaction term. In the particular case s  = 1, the s -perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66(7):1129–1162, 2013 ; Comm. Pure Appl. Math., 2014 ) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-014-2244-1</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2015-05, Vol.336 (1), p.441-507
issn 0010-3616
1432-0916
language eng
recordid cdi_hal_primary_oai_HAL_hal_00955169v1
source SpringerLink Journals
subjects Analysis of PDEs
Classical and Quantum Gravitation
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Mathematics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isoperimetry%20and%20Stability%20Properties%20of%20Balls%20with%20Respect%20to%20Nonlocal%20Energies&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Figalli,%20A.&rft.date=2015-05-01&rft.volume=336&rft.issue=1&rft.spage=441&rft.epage=507&rft.pages=441-507&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-014-2244-1&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00955169v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true