Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies

We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2015-05, Vol.336 (1), p.441-507
Hauptverfasser: Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a sharp quantitative isoperimetric inequality for nonlocal s -perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s -perimeter plus a non-local repulsive interaction term. In the particular case s  = 1, the s -perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66(7):1129–1162, 2013 ; Comm. Pure Appl. Math., 2014 ) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-2244-1