Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
We prove the well-posedness of entropy weak solutions of a scalar conservation law with non-local flux arising in traffic flow modeling. The result is obtained providing accurate L ∞ , BV and L 1 estimates for the sequence of approximate solutions constructed by an adapted Lax-Friedrichs scheme.
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2016-02, Vol.132 (2), p.217-241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the well-posedness of entropy weak solutions of a scalar conservation law with non-local flux arising in traffic flow modeling. The result is obtained providing accurate
L
∞
, BV and
L
1
estimates for the sequence of approximate solutions constructed by an adapted Lax-Friedrichs scheme. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-015-0717-6 |