Well-posedness of a conservation law with non-local flux arising in traffic flow modeling

We prove the well-posedness of entropy weak solutions of a scalar conservation law with non-local flux arising in traffic flow modeling. The result is obtained providing accurate L ∞ , BV and L 1 estimates for the sequence of approximate solutions constructed by an adapted Lax-Friedrichs scheme.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2016-02, Vol.132 (2), p.217-241
Hauptverfasser: Blandin, Sebastien, Goatin, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the well-posedness of entropy weak solutions of a scalar conservation law with non-local flux arising in traffic flow modeling. The result is obtained providing accurate L ∞ , BV and L 1 estimates for the sequence of approximate solutions constructed by an adapted Lax-Friedrichs scheme.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-015-0717-6