Alleviating the non-ultralocality of the AdS_5 x S^5 superstring

We generalize the initial steps of the Faddeev-Reshetikhin procedure to the AdS_5 x S^5 superstring theory. Specifically, we propose a modification of the Poisson bracket whose alleviated non-ultralocality enables to write down a lattice algebra for the Lax matrix. We then show that the dynamics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2012, Vol.10
Hauptverfasser: Delduc, Francois, Magro, Marc, Vicedo, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the initial steps of the Faddeev-Reshetikhin procedure to the AdS_5 x S^5 superstring theory. Specifically, we propose a modification of the Poisson bracket whose alleviated non-ultralocality enables to write down a lattice algebra for the Lax matrix. We then show that the dynamics of the Pohlmeyer reduction of the AdS_5 x S^5 superstring can be naturally reproduced with respect to this modified Poisson bracket. This work generalizes the alleviation procedure recently developed for symmetric space sigma-models. It also shows that the lattice algebra recently obtained for the AdS_5 x S^5 semi-symmetric space sine-Gordon theory coincides with the one obtained by the alleviation procedure.
ISSN:1126-6708
1029-8479
DOI:10.1007/JHEP10(2012)061