Generalized sine-Gordon models and quantum braided groups

A bstract We determine the quantized function algebras associated with various examples of generalized sine-Gordon models. These are quadratic algebras of the general Freidel-Maillet type, the classical limits of which reproduce the lattice Poisson algebra recently obtained for these models defined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2013-03, Vol.2013 (3), p.1-20, Article 31
Hauptverfasser: Delduc, F., Magro, M., Vicedo, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We determine the quantized function algebras associated with various examples of generalized sine-Gordon models. These are quadratic algebras of the general Freidel-Maillet type, the classical limits of which reproduce the lattice Poisson algebra recently obtained for these models defined by a gauged Wess-Zumino-Witten action plus an integrable potential. More specifically, we argue based on these examples that the natural framework for constructing quantum lattice integrable versions of generalized sine-Gordon models is that of affine quantum braided groups.
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP03(2013)031