Generalized sine-Gordon models and quantum braided groups
A bstract We determine the quantized function algebras associated with various examples of generalized sine-Gordon models. These are quadratic algebras of the general Freidel-Maillet type, the classical limits of which reproduce the lattice Poisson algebra recently obtained for these models defined...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2013-03, Vol.2013 (3), p.1-20, Article 31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We determine the quantized function algebras associated with various examples of generalized sine-Gordon models. These are quadratic algebras of the general Freidel-Maillet type, the classical limits of which reproduce the lattice Poisson algebra recently obtained for these models defined by a gauged Wess-Zumino-Witten action plus an integrable potential. More specifically, we argue based on these examples that the natural framework for constructing quantum lattice integrable versions of generalized sine-Gordon models is that of affine quantum braided groups. |
---|---|
ISSN: | 1029-8479 1126-6708 1029-8479 |
DOI: | 10.1007/JHEP03(2013)031 |