Temperature and sporulation of aquatic hyphomycetes

Temperature appears to be an important factor affecting the occurrence and distribution of aquatic hyphomycetes, the dominant leaf litter-decomposing fungi in streams. We compared conidium production by eight species of aquatic hyphomycetes grown on yellow poplar leaves in stream-simulating microcos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1998-04, Vol.64 (4), p.1522-1525
Hauptverfasser: Chauvet, E. (Centre d'Ecologie des Systemes Aquatiques Continentaux, Toulouse, France), Suberkropp, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature appears to be an important factor affecting the occurrence and distribution of aquatic hyphomycetes, the dominant leaf litter-decomposing fungi in streams. We compared conidium production by eight species of aquatic hyphomycetes grown on yellow poplar leaves in stream-simulating microcosms at three temperatures (15, 20, and 25 degrees C). The greatest conidium production occurred at 15 degrees C for one species, 20 degrees C for two species, and 25 degrees C for two species. Two species produced similar numbers of conidia at 20 and 25 degrees C, and one species produced similar numbers of conidia at all three temperatures. Linear growth rates were determined on malt extract agar. Six species had the same pattern of temperature responses for growth on malt extract agar as for sporulation on leaves, as shown by the positive correlations between the two parameters at the three temperatures. The species examined also exhibited differences in number of conidia produced from a similar amount of leaf material at a given temperature. These differences appeared to be due primarily to differences in individual conidium mass (determined by weighing conidia produced from cultures), as shown by the relationship of the type Y = k/X (r2 = 0.96), where Y is the number of conidia produced, X is the individual conidium mass in milligrams, and k is a constant empirically determined to be 2.11. This finding supports the hypothesis that aquatic hyphomycetes allocate similar amounts of their resources to reproduction but vary with respect how these resources are partitioned into reproductive units (conidia)
ISSN:0099-2240
1098-5336
DOI:10.1128/aem.64.4.1522-1525.1998