A numerical method for nonconvex multi-objective optimal control problems

A numerical method is proposed for constructing an approximation of the Pareto front of nonconvex multi-objective optimal control problems. First, a suitable scalarization technique is employed for the multi-objective optimal control problem. Then by using a grid of scalarization parameter values, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2013
Hauptverfasser: Kaya, Yalçin, Maurer, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical method is proposed for constructing an approximation of the Pareto front of nonconvex multi-objective optimal control problems. First, a suitable scalarization technique is employed for the multi-objective optimal control problem. Then by using a grid of scalarization parameter values, i.e., a grid of weights, a sequence of single-objective optimal control problems are solved to obtain points which are spread over the Pareto front. The technique is illustrated on problems involving tumor anti-angiogenesis and a fed-batch bioreactor, which exhibit bang-bang, singular and boundary types of optimal control. We illustrate that the Bolza form, the traditional scalarization in optimal control, fails to represent all the compromise, i.e., Pareto optimal, solutions.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-013-9603-2