Improving heuristics for network modularity maximization using an exact algorithm
Heuristics are widely applied to modularity maximization models for the identification of communities in complex networks. We present an approach to be applied as a post-processing to heuristic methods in order to improve their performances. Starting from a given partition, we test with an exact alg...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-01, Vol.163 (1), p.65-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heuristics are widely applied to modularity maximization models for the identification of communities in complex networks. We present an approach to be applied as a post-processing to heuristic methods in order to improve their performances. Starting from a given partition, we test with an exact algorithm for bipartitioning if it is worthwhile to split some communities or to merge two of them. A combination of merge and split actions is also performed. Computational experiments show that the proposed approach is effective in improving heuristic results. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2012.03.030 |