Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration

Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2011-01, Vol.33 (1), p.119-127
Hauptverfasser: Guiu, Boris, Petit, Jean-Michel, Loffroy, Romaric, Aho, Serge, Ben Salem, Douraied, Masson, David, Robin, Isabelle, Vergès, Bruno, Hillon, Patrick, Cercueil, Jean-Pierre, Krausé, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 119
container_title Journal of magnetic resonance imaging
container_volume 33
creator Guiu, Boris
Petit, Jean-Michel
Loffroy, Romaric
Aho, Serge
Ben Salem, Douraied
Masson, David
Robin, Isabelle
Vergès, Bruno
Hillon, Patrick
Cercueil, Jean-Pierre
Krausé, Denis
description Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test. Results Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively. Conclusion Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jmri.22390
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00931164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821199570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqVw4QGQb6hIWfwn2cTcqhW0W20pLEVIXCzHGe-6JHGwvS15Kl4Rb9LukZPHo998mvm-JHlN8IxgTN_fts7MKGUcP0mOSU5pSvNy_jTWOGcpKXFxlLzw_hZjzHmWP0-OKCElJZQfJ39X5g4caiFshwY6QNpJFYztUDWgeiebFMmuRsGZvoEU1NaijZO1gS5MP9PKjek2SAbEZvjmA1pY56CRo8a9CVvUOxtifbVGvgcVnPXK9sMoCz7E-RG1Gjlb7XzowHskdYhbffuyvEaybk1nfHAj9zJ5pmXj4dXDe5J8__TxZnGRrq7Pl4uzVaoyNsep1jyvNOFaUVXrQpW14oWuCikBaAUZqaXkXBVUFzyjFBOeEclUlbOKA6iSnSSnk-5WNqJ3cUs3CCuNuDhbiX0veskImWd3JLJvJzZe-nsXbxKt8QqaRnZgd15EqwnneYEj-W4iVXTBO9AHaYLFPkuxz1KMWUb4zYPsrmqhPqCP4UWATMC9aWD4j5S4vFovH0XTaSY6Cn8OM9L9EvOCFbn48flcsOwr_1nyS7Fm_wAJUrxK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821199570</pqid></control><display><type>article</type><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</creator><creatorcontrib>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</creatorcontrib><description>Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test. Results Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively. Conclusion Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.22390</identifier><identifier>PMID: 21182129</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adipose Tissue ; Adipose Tissue - metabolism ; Adipose Tissue - pathology ; Adult ; Aged ; Biological Markers ; Biomarkers - metabolism ; Carbon Compounds, Inorganic ; Carbon Compounds, Inorganic - metabolism ; Contrast Media ; Contrast Media - administration &amp; dosage ; Dextrans ; Dextrans - pharmacokinetics ; Echo-Planar Imaging ; Echo-Planar Imaging - methods ; fat quantification ; Fatty Liver ; Fatty Liver - complications ; Fatty Liver - diagnosis ; Fatty Liver - metabolism ; Female ; Humans ; Iron Overload ; Iron Overload - complications ; Iron Overload - diagnosis ; Iron Overload - metabolism ; Life Sciences ; Liver ; Liver - metabolism ; Liver - pathology ; magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Magnetic Resonance Spectroscopy - methods ; Magnetite Nanoparticles ; Male ; Middle Aged ; Non-alcoholic Fatty Liver Disease ; Protons ; Reproducibility of Results ; robustness ; Sensitivity and Specificity ; Statistics as Topic ; steatosis ; Tissue Distribution</subject><ispartof>Journal of magnetic resonance imaging, 2011-01, Vol.33 (1), p.119-127</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</citedby><cites>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</cites><orcidid>0000-0002-3107-5967 ; 0000-0001-5532-2208 ; 0000-0001-7590-8644 ; 0000-0003-1692-0699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.22390$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.22390$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21182129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-brest.fr/hal-00931164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guiu, Boris</creatorcontrib><creatorcontrib>Petit, Jean-Michel</creatorcontrib><creatorcontrib>Loffroy, Romaric</creatorcontrib><creatorcontrib>Aho, Serge</creatorcontrib><creatorcontrib>Ben Salem, Douraied</creatorcontrib><creatorcontrib>Masson, David</creatorcontrib><creatorcontrib>Robin, Isabelle</creatorcontrib><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Hillon, Patrick</creatorcontrib><creatorcontrib>Cercueil, Jean-Pierre</creatorcontrib><creatorcontrib>Krausé, Denis</creatorcontrib><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test. Results Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively. Conclusion Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</description><subject>Adipose Tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adipose Tissue - pathology</subject><subject>Adult</subject><subject>Aged</subject><subject>Biological Markers</subject><subject>Biomarkers - metabolism</subject><subject>Carbon Compounds, Inorganic</subject><subject>Carbon Compounds, Inorganic - metabolism</subject><subject>Contrast Media</subject><subject>Contrast Media - administration &amp; dosage</subject><subject>Dextrans</subject><subject>Dextrans - pharmacokinetics</subject><subject>Echo-Planar Imaging</subject><subject>Echo-Planar Imaging - methods</subject><subject>fat quantification</subject><subject>Fatty Liver</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - diagnosis</subject><subject>Fatty Liver - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Iron Overload</subject><subject>Iron Overload - complications</subject><subject>Iron Overload - diagnosis</subject><subject>Iron Overload - metabolism</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetite Nanoparticles</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Non-alcoholic Fatty Liver Disease</subject><subject>Protons</subject><subject>Reproducibility of Results</subject><subject>robustness</subject><subject>Sensitivity and Specificity</subject><subject>Statistics as Topic</subject><subject>steatosis</subject><subject>Tissue Distribution</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxiMEoqVw4QGQb6hIWfwn2cTcqhW0W20pLEVIXCzHGe-6JHGwvS15Kl4Rb9LukZPHo998mvm-JHlN8IxgTN_fts7MKGUcP0mOSU5pSvNy_jTWOGcpKXFxlLzw_hZjzHmWP0-OKCElJZQfJ39X5g4caiFshwY6QNpJFYztUDWgeiebFMmuRsGZvoEU1NaijZO1gS5MP9PKjek2SAbEZvjmA1pY56CRo8a9CVvUOxtifbVGvgcVnPXK9sMoCz7E-RG1Gjlb7XzowHskdYhbffuyvEaybk1nfHAj9zJ5pmXj4dXDe5J8__TxZnGRrq7Pl4uzVaoyNsep1jyvNOFaUVXrQpW14oWuCikBaAUZqaXkXBVUFzyjFBOeEclUlbOKA6iSnSSnk-5WNqJ3cUs3CCuNuDhbiX0veskImWd3JLJvJzZe-nsXbxKt8QqaRnZgd15EqwnneYEj-W4iVXTBO9AHaYLFPkuxz1KMWUb4zYPsrmqhPqCP4UWATMC9aWD4j5S4vFovH0XTaSY6Cn8OM9L9EvOCFbn48flcsOwr_1nyS7Fm_wAJUrxK</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Guiu, Boris</creator><creator>Petit, Jean-Michel</creator><creator>Loffroy, Romaric</creator><creator>Aho, Serge</creator><creator>Ben Salem, Douraied</creator><creator>Masson, David</creator><creator>Robin, Isabelle</creator><creator>Vergès, Bruno</creator><creator>Hillon, Patrick</creator><creator>Cercueil, Jean-Pierre</creator><creator>Krausé, Denis</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3107-5967</orcidid><orcidid>https://orcid.org/0000-0001-5532-2208</orcidid><orcidid>https://orcid.org/0000-0001-7590-8644</orcidid><orcidid>https://orcid.org/0000-0003-1692-0699</orcidid></search><sort><creationdate>201101</creationdate><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><author>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adipose Tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adipose Tissue - pathology</topic><topic>Adult</topic><topic>Aged</topic><topic>Biological Markers</topic><topic>Biomarkers - metabolism</topic><topic>Carbon Compounds, Inorganic</topic><topic>Carbon Compounds, Inorganic - metabolism</topic><topic>Contrast Media</topic><topic>Contrast Media - administration &amp; dosage</topic><topic>Dextrans</topic><topic>Dextrans - pharmacokinetics</topic><topic>Echo-Planar Imaging</topic><topic>Echo-Planar Imaging - methods</topic><topic>fat quantification</topic><topic>Fatty Liver</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - diagnosis</topic><topic>Fatty Liver - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Iron Overload</topic><topic>Iron Overload - complications</topic><topic>Iron Overload - diagnosis</topic><topic>Iron Overload - metabolism</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetite Nanoparticles</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Non-alcoholic Fatty Liver Disease</topic><topic>Protons</topic><topic>Reproducibility of Results</topic><topic>robustness</topic><topic>Sensitivity and Specificity</topic><topic>Statistics as Topic</topic><topic>steatosis</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guiu, Boris</creatorcontrib><creatorcontrib>Petit, Jean-Michel</creatorcontrib><creatorcontrib>Loffroy, Romaric</creatorcontrib><creatorcontrib>Aho, Serge</creatorcontrib><creatorcontrib>Ben Salem, Douraied</creatorcontrib><creatorcontrib>Masson, David</creatorcontrib><creatorcontrib>Robin, Isabelle</creatorcontrib><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Hillon, Patrick</creatorcontrib><creatorcontrib>Cercueil, Jean-Pierre</creatorcontrib><creatorcontrib>Krausé, Denis</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guiu, Boris</au><au>Petit, Jean-Michel</au><au>Loffroy, Romaric</au><au>Aho, Serge</au><au>Ben Salem, Douraied</au><au>Masson, David</au><au>Robin, Isabelle</au><au>Vergès, Bruno</au><au>Hillon, Patrick</au><au>Cercueil, Jean-Pierre</au><au>Krausé, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2011-01</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test. Results Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively. Conclusion Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21182129</pmid><doi>10.1002/jmri.22390</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3107-5967</orcidid><orcidid>https://orcid.org/0000-0001-5532-2208</orcidid><orcidid>https://orcid.org/0000-0001-7590-8644</orcidid><orcidid>https://orcid.org/0000-0003-1692-0699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2011-01, Vol.33 (1), p.119-127
issn 1053-1807
1522-2586
language eng
recordid cdi_hal_primary_oai_HAL_hal_00931164v1
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adipose Tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Adult
Aged
Biological Markers
Biomarkers - metabolism
Carbon Compounds, Inorganic
Carbon Compounds, Inorganic - metabolism
Contrast Media
Contrast Media - administration & dosage
Dextrans
Dextrans - pharmacokinetics
Echo-Planar Imaging
Echo-Planar Imaging - methods
fat quantification
Fatty Liver
Fatty Liver - complications
Fatty Liver - diagnosis
Fatty Liver - metabolism
Female
Humans
Iron Overload
Iron Overload - complications
Iron Overload - diagnosis
Iron Overload - metabolism
Life Sciences
Liver
Liver - metabolism
Liver - pathology
magnetic resonance imaging
Magnetic Resonance Spectroscopy
Magnetic Resonance Spectroscopy - methods
Magnetite Nanoparticles
Male
Middle Aged
Non-alcoholic Fatty Liver Disease
Protons
Reproducibility of Results
robustness
Sensitivity and Specificity
Statistics as Topic
steatosis
Tissue Distribution
title Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20methylene%20fraction%20by%20dual-%20and%20triple-echo%20gradient-echo%20imaging%20at%203.0T:%20Correlation%20with%20proton%20MR%20spectroscopy%20and%20estimation%20of%20robustness%20after%20SPIO%20administration&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Guiu,%20Boris&rft.date=2011-01&rft.volume=33&rft.issue=1&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.22390&rft_dat=%3Cproquest_hal_p%3E821199570%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821199570&rft_id=info:pmid/21182129&rfr_iscdi=true