Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration
Purpose To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading. Materials and Methods Forty type‐2...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2011-01, Vol.33 (1), p.119-127 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Journal of magnetic resonance imaging |
container_volume | 33 |
creator | Guiu, Boris Petit, Jean-Michel Loffroy, Romaric Aho, Serge Ben Salem, Douraied Masson, David Robin, Isabelle Vergès, Bruno Hillon, Patrick Cercueil, Jean-Pierre Krausé, Denis |
description | Purpose
To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading.
Materials and Methods
Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test.
Results
Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively.
Conclusion
Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jmri.22390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00931164v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821199570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqVw4QGQb6hIWfwn2cTcqhW0W20pLEVIXCzHGe-6JHGwvS15Kl4Rb9LukZPHo998mvm-JHlN8IxgTN_fts7MKGUcP0mOSU5pSvNy_jTWOGcpKXFxlLzw_hZjzHmWP0-OKCElJZQfJ39X5g4caiFshwY6QNpJFYztUDWgeiebFMmuRsGZvoEU1NaijZO1gS5MP9PKjek2SAbEZvjmA1pY56CRo8a9CVvUOxtifbVGvgcVnPXK9sMoCz7E-RG1Gjlb7XzowHskdYhbffuyvEaybk1nfHAj9zJ5pmXj4dXDe5J8__TxZnGRrq7Pl4uzVaoyNsep1jyvNOFaUVXrQpW14oWuCikBaAUZqaXkXBVUFzyjFBOeEclUlbOKA6iSnSSnk-5WNqJ3cUs3CCuNuDhbiX0veskImWd3JLJvJzZe-nsXbxKt8QqaRnZgd15EqwnneYEj-W4iVXTBO9AHaYLFPkuxz1KMWUb4zYPsrmqhPqCP4UWATMC9aWD4j5S4vFovH0XTaSY6Cn8OM9L9EvOCFbn48flcsOwr_1nyS7Fm_wAJUrxK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821199570</pqid></control><display><type>article</type><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</creator><creatorcontrib>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</creatorcontrib><description>Purpose
To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading.
Materials and Methods
Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test.
Results
Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively.
Conclusion
Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.22390</identifier><identifier>PMID: 21182129</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adipose Tissue ; Adipose Tissue - metabolism ; Adipose Tissue - pathology ; Adult ; Aged ; Biological Markers ; Biomarkers - metabolism ; Carbon Compounds, Inorganic ; Carbon Compounds, Inorganic - metabolism ; Contrast Media ; Contrast Media - administration & dosage ; Dextrans ; Dextrans - pharmacokinetics ; Echo-Planar Imaging ; Echo-Planar Imaging - methods ; fat quantification ; Fatty Liver ; Fatty Liver - complications ; Fatty Liver - diagnosis ; Fatty Liver - metabolism ; Female ; Humans ; Iron Overload ; Iron Overload - complications ; Iron Overload - diagnosis ; Iron Overload - metabolism ; Life Sciences ; Liver ; Liver - metabolism ; Liver - pathology ; magnetic resonance imaging ; Magnetic Resonance Spectroscopy ; Magnetic Resonance Spectroscopy - methods ; Magnetite Nanoparticles ; Male ; Middle Aged ; Non-alcoholic Fatty Liver Disease ; Protons ; Reproducibility of Results ; robustness ; Sensitivity and Specificity ; Statistics as Topic ; steatosis ; Tissue Distribution</subject><ispartof>Journal of magnetic resonance imaging, 2011-01, Vol.33 (1), p.119-127</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>Copyright © 2010 Wiley-Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</citedby><cites>FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</cites><orcidid>0000-0002-3107-5967 ; 0000-0001-5532-2208 ; 0000-0001-7590-8644 ; 0000-0003-1692-0699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.22390$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.22390$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21182129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-brest.fr/hal-00931164$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guiu, Boris</creatorcontrib><creatorcontrib>Petit, Jean-Michel</creatorcontrib><creatorcontrib>Loffroy, Romaric</creatorcontrib><creatorcontrib>Aho, Serge</creatorcontrib><creatorcontrib>Ben Salem, Douraied</creatorcontrib><creatorcontrib>Masson, David</creatorcontrib><creatorcontrib>Robin, Isabelle</creatorcontrib><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Hillon, Patrick</creatorcontrib><creatorcontrib>Cercueil, Jean-Pierre</creatorcontrib><creatorcontrib>Krausé, Denis</creatorcontrib><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose
To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading.
Materials and Methods
Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test.
Results
Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively.
Conclusion
Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</description><subject>Adipose Tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adipose Tissue - pathology</subject><subject>Adult</subject><subject>Aged</subject><subject>Biological Markers</subject><subject>Biomarkers - metabolism</subject><subject>Carbon Compounds, Inorganic</subject><subject>Carbon Compounds, Inorganic - metabolism</subject><subject>Contrast Media</subject><subject>Contrast Media - administration & dosage</subject><subject>Dextrans</subject><subject>Dextrans - pharmacokinetics</subject><subject>Echo-Planar Imaging</subject><subject>Echo-Planar Imaging - methods</subject><subject>fat quantification</subject><subject>Fatty Liver</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - diagnosis</subject><subject>Fatty Liver - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Iron Overload</subject><subject>Iron Overload - complications</subject><subject>Iron Overload - diagnosis</subject><subject>Iron Overload - metabolism</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetite Nanoparticles</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Non-alcoholic Fatty Liver Disease</subject><subject>Protons</subject><subject>Reproducibility of Results</subject><subject>robustness</subject><subject>Sensitivity and Specificity</subject><subject>Statistics as Topic</subject><subject>steatosis</subject><subject>Tissue Distribution</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxiMEoqVw4QGQb6hIWfwn2cTcqhW0W20pLEVIXCzHGe-6JHGwvS15Kl4Rb9LukZPHo998mvm-JHlN8IxgTN_fts7MKGUcP0mOSU5pSvNy_jTWOGcpKXFxlLzw_hZjzHmWP0-OKCElJZQfJ39X5g4caiFshwY6QNpJFYztUDWgeiebFMmuRsGZvoEU1NaijZO1gS5MP9PKjek2SAbEZvjmA1pY56CRo8a9CVvUOxtifbVGvgcVnPXK9sMoCz7E-RG1Gjlb7XzowHskdYhbffuyvEaybk1nfHAj9zJ5pmXj4dXDe5J8__TxZnGRrq7Pl4uzVaoyNsep1jyvNOFaUVXrQpW14oWuCikBaAUZqaXkXBVUFzyjFBOeEclUlbOKA6iSnSSnk-5WNqJ3cUs3CCuNuDhbiX0veskImWd3JLJvJzZe-nsXbxKt8QqaRnZgd15EqwnneYEj-W4iVXTBO9AHaYLFPkuxz1KMWUb4zYPsrmqhPqCP4UWATMC9aWD4j5S4vFovH0XTaSY6Cn8OM9L9EvOCFbn48flcsOwr_1nyS7Fm_wAJUrxK</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Guiu, Boris</creator><creator>Petit, Jean-Michel</creator><creator>Loffroy, Romaric</creator><creator>Aho, Serge</creator><creator>Ben Salem, Douraied</creator><creator>Masson, David</creator><creator>Robin, Isabelle</creator><creator>Vergès, Bruno</creator><creator>Hillon, Patrick</creator><creator>Cercueil, Jean-Pierre</creator><creator>Krausé, Denis</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3107-5967</orcidid><orcidid>https://orcid.org/0000-0001-5532-2208</orcidid><orcidid>https://orcid.org/0000-0001-7590-8644</orcidid><orcidid>https://orcid.org/0000-0003-1692-0699</orcidid></search><sort><creationdate>201101</creationdate><title>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</title><author>Guiu, Boris ; Petit, Jean-Michel ; Loffroy, Romaric ; Aho, Serge ; Ben Salem, Douraied ; Masson, David ; Robin, Isabelle ; Vergès, Bruno ; Hillon, Patrick ; Cercueil, Jean-Pierre ; Krausé, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4360-ff95bf19fc2cdf7c8dc97fb7aaee2be41daa99c72f7942201941a3cb53b9eec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adipose Tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adipose Tissue - pathology</topic><topic>Adult</topic><topic>Aged</topic><topic>Biological Markers</topic><topic>Biomarkers - metabolism</topic><topic>Carbon Compounds, Inorganic</topic><topic>Carbon Compounds, Inorganic - metabolism</topic><topic>Contrast Media</topic><topic>Contrast Media - administration & dosage</topic><topic>Dextrans</topic><topic>Dextrans - pharmacokinetics</topic><topic>Echo-Planar Imaging</topic><topic>Echo-Planar Imaging - methods</topic><topic>fat quantification</topic><topic>Fatty Liver</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - diagnosis</topic><topic>Fatty Liver - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Iron Overload</topic><topic>Iron Overload - complications</topic><topic>Iron Overload - diagnosis</topic><topic>Iron Overload - metabolism</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetite Nanoparticles</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Non-alcoholic Fatty Liver Disease</topic><topic>Protons</topic><topic>Reproducibility of Results</topic><topic>robustness</topic><topic>Sensitivity and Specificity</topic><topic>Statistics as Topic</topic><topic>steatosis</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guiu, Boris</creatorcontrib><creatorcontrib>Petit, Jean-Michel</creatorcontrib><creatorcontrib>Loffroy, Romaric</creatorcontrib><creatorcontrib>Aho, Serge</creatorcontrib><creatorcontrib>Ben Salem, Douraied</creatorcontrib><creatorcontrib>Masson, David</creatorcontrib><creatorcontrib>Robin, Isabelle</creatorcontrib><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Hillon, Patrick</creatorcontrib><creatorcontrib>Cercueil, Jean-Pierre</creatorcontrib><creatorcontrib>Krausé, Denis</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guiu, Boris</au><au>Petit, Jean-Michel</au><au>Loffroy, Romaric</au><au>Aho, Serge</au><au>Ben Salem, Douraied</au><au>Masson, David</au><au>Robin, Isabelle</au><au>Vergès, Bruno</au><au>Hillon, Patrick</au><au>Cercueil, Jean-Pierre</au><au>Krausé, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2011-01</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose
To assess the systematic errors in liver methylene fraction (LMF) resulting from fat–fat interference effects with dual‐ and triple‐echo gradient‐recalled‐echo Dual/Triple GRE) sequences and to test the robustness of these sequences after iron overloading.
Materials and Methods
Forty type‐2 diabetic patients underwent LMF measurement by 3.0T 1H magnetic resonance spectroscopy (corrected for T1 and T2 decays) as the reference standard and liver fat fraction (%Fat) measurement by four Dual/Triple GRE sequences with 20° and 60° flip angle (α), corrected for T1 recovery. The same four sequences were repeated in eight patients after ferumoxide injection. Corrections for systematic errors were determined from the linear regressions (spectroscopy LMF values over Dual/Triple GRE %Fat values). Robustness was tested using Wilcoxon's signed‐rank test.
Results
Fat–fat interference effects produced a ∼10% relative systematic error and T2* decay produced a 1.9%–4.2% absolute systematic error in LMF. When comparing before and after ferumoxide, dual‐echo imaging with α = 20° and α = 60°, even when corrected, showed absolute differences of 7.23% [2.81%–10.25%] (P = 0.0117) and 5.65% [1.89%–8.216.8%] (P = 0.0117), respectively; compared to only 1.17% [0.08%–2.83%] (P = 0.0251) and 1.15% [0.37%–2.73%] (P = 0.2626) with triple‐echo imaging and α = 20° and α = 60°, respectively.
Conclusion
Triple‐echo imaging with α = 60° corrected for both T1 recovery and fat–fat interference effects is robust after superparamagnetic iron oxide (SPIO) administration and can reliably quantify LMF. J. Magn. Reson. Imaging 2011;33:119–127. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21182129</pmid><doi>10.1002/jmri.22390</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3107-5967</orcidid><orcidid>https://orcid.org/0000-0001-5532-2208</orcidid><orcidid>https://orcid.org/0000-0001-7590-8644</orcidid><orcidid>https://orcid.org/0000-0003-1692-0699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2011-01, Vol.33 (1), p.119-127 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00931164v1 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adipose Tissue Adipose Tissue - metabolism Adipose Tissue - pathology Adult Aged Biological Markers Biomarkers - metabolism Carbon Compounds, Inorganic Carbon Compounds, Inorganic - metabolism Contrast Media Contrast Media - administration & dosage Dextrans Dextrans - pharmacokinetics Echo-Planar Imaging Echo-Planar Imaging - methods fat quantification Fatty Liver Fatty Liver - complications Fatty Liver - diagnosis Fatty Liver - metabolism Female Humans Iron Overload Iron Overload - complications Iron Overload - diagnosis Iron Overload - metabolism Life Sciences Liver Liver - metabolism Liver - pathology magnetic resonance imaging Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy - methods Magnetite Nanoparticles Male Middle Aged Non-alcoholic Fatty Liver Disease Protons Reproducibility of Results robustness Sensitivity and Specificity Statistics as Topic steatosis Tissue Distribution |
title | Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20methylene%20fraction%20by%20dual-%20and%20triple-echo%20gradient-echo%20imaging%20at%203.0T:%20Correlation%20with%20proton%20MR%20spectroscopy%20and%20estimation%20of%20robustness%20after%20SPIO%20administration&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Guiu,%20Boris&rft.date=2011-01&rft.volume=33&rft.issue=1&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.22390&rft_dat=%3Cproquest_hal_p%3E821199570%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821199570&rft_id=info:pmid/21182129&rfr_iscdi=true |