Beneficial management practices and mitigation of greenhouse gas emissions in the agriculture of the Canadian Prairie: a review

Climate change is one of the main global issues of modern time. Ever increasing demand for food/feed and the need for higher environmental standards require shaping of the agricultural activities toward ecological and more sustainable efficient systems. One of the principal ways of attaining higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy for sustainable development 2011-07, Vol.31 (3), p.433-451
Hauptverfasser: Asgedom, Haben, Kebreab, Ermias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change is one of the main global issues of modern time. Ever increasing demand for food/feed and the need for higher environmental standards require shaping of the agricultural activities toward ecological and more sustainable efficient systems. One of the principal ways of attaining higher productivity and environmental standards is identification and adoption of beneficial management practices (BMP) by reviewing the conventional agricultural activities. The BMP are agricultural practices that promote sustainable land stewardship and maintain/increase profitability of farms. The BMP are from both crop and animal production systems and tradeoffs between the two systems could provide several opportunities in reducing, removing and/or avoiding of greenhouse gases (GHG) emissions. Despite that, few reviews have presented them together. This review covers GHG emissions related to the BMP in the crop and animal production systems of farms relevant to Canadian Prairie. These BMP include: (1) use of inorganic N fertilizers, (2) livestock and feed management, (3) manure management, (4) cropping systems, (5) tillage practices and (6) improved pasture and grazing management. In addition, sources of variations, quantification methods and adoptability are discussed. Quantified GHG emissions from direct and indirect measurements of researches from Canada and other part of the world are included. Since most experiments are conducted under multiple biophysical scenarios while adopting various methodologies, summarizing the findings was difficult. The effect of BMP on GHG is determined by ecological processes. Such determinants are discussed and knowledge gaps are identified. Integration of crop and livestock production systems could further lead toward higher energy and resource use efficiency; hence less GHG emissions.
ISSN:1774-0746
1773-0155
DOI:10.1007/s13593-011-0016-2