High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods
High-quality volumetric parameterization of computational domain plays an important role in three-dimensional isogeometric analysis. Reparameterization technique can improve the distribution of isoparametric curves/surfaces without changing the geometry. In this paper, using the reparameterization m...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2014-11, Vol.54 (5), p.1303-1313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-quality volumetric parameterization of computational domain plays an important role in three-dimensional isogeometric analysis. Reparameterization technique can improve the distribution of isoparametric curves/surfaces without changing the geometry. In this paper, using the reparameterization method, we investigate the high-quality construction of analysis-suitable NURBS volumetric parameterization. Firstly, we introduce the concept of volumetric reparameterization, and propose an optimal Möbius transformation to improve the quality of the isoparametric structure based on a new uniformity metric. Secondly, from given boundary NURBS surfaces, we present a two-stage scheme to construct the analysis-suitable volumetric parameterization: in the first step, uniformity-improved reparameterization is performed on the boundary surfaces to achieve high-quality isoparametric structure without changing the shape; in the second step, from a new variational harmonic metric and the reparameterized boundary surfaces, we construct the optimal inner control points and weights to achieve an analysis-suitable NURBS solid. Several examples with complicated geometry are presented to illustrate the effectiveness of proposed methods. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-014-1060-y |