Decentralized control for dynamically reconfigurable FPGA systems
The progress in FPGA technology has enabled FPGA-based reconfigurable systems to target increasingly sophisticated applications, which has led to a high control design complexity, resulting in longer design cycles. In this paper, we propose a control design approach for FPGA-based reconfigurable sys...
Gespeichert in:
Veröffentlicht in: | Microprocessors and microsystems 2013-11, Vol.37 (8), p.871-884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The progress in FPGA technology has enabled FPGA-based reconfigurable systems to target increasingly sophisticated applications, which has led to a high control design complexity, resulting in longer design cycles. In this paper, we propose a control design approach for FPGA-based reconfigurable systems aiming at increasing design productivity. This approach is based on a semi-distributed control model that splits different control concerns (monitoring, decision-making and reconfiguration) between autonomous modular controllers and makes use of formalism-oriented design, to decrease the control design complexity and facilitate design verification, reuse and scalability. This model is composed of distributed controllers handling the self-adaptivity of the system reconfigurable regions and a coordinator to respect the system global constraints. To enhance design productivity, the proposed control model is generated automatically using a high-level modeling approach. This approach is based on MDE (Model-Driven Engineering) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard, allowing to make low-level technical details transparent to designers and to automate code generation from high-level models. Experiments on the generated control systems showed that the proposed semi-distributed control model is more flexible, reusable and scalable than the centralized one, at the cost of a slight increase in required hardware resources. |
---|---|
ISSN: | 0141-9331 1872-9436 |
DOI: | 10.1016/j.micpro.2013.04.012 |