The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection

We prove that a uniform rooted plane map with n edges converges in distribution after a suitable normalization to the Brownian map for the Gromov-Hausdorff topology. A recent bijection due to Ambjørn and Budd allows to derive this result by a direct coupling with a uniform random quadrangulation wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2014-08, Vol.19 (none), p.1-16
Hauptverfasser: Bettinelli, Jérémie, Jacob, Emmanuel, Miermont, Grégory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a uniform rooted plane map with n edges converges in distribution after a suitable normalization to the Brownian map for the Gromov-Hausdorff topology. A recent bijection due to Ambjørn and Budd allows to derive this result by a direct coupling with a uniform random quadrangulation with n faces.
ISSN:1083-6489
1083-6489
DOI:10.1214/EJP.v19-3213