The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection
We prove that a uniform rooted plane map with n edges converges in distribution after a suitable normalization to the Brownian map for the Gromov-Hausdorff topology. A recent bijection due to Ambjørn and Budd allows to derive this result by a direct coupling with a uniform random quadrangulation wit...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2014-08, Vol.19 (none), p.1-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a uniform rooted plane map with n edges converges in distribution after a suitable normalization to the Brownian map for the Gromov-Hausdorff topology. A recent bijection due to Ambjørn and Budd allows to derive this result by a direct coupling with a uniform random quadrangulation with n faces. |
---|---|
ISSN: | 1083-6489 1083-6489 |
DOI: | 10.1214/EJP.v19-3213 |