Multilevel Richardson–Romberg extrapolation
We propose and analyze a Multilevel Richardson–Romberg (ML2R) estimator which combines the higher order bias cancellation of the Multistep Richardson–Romberg method introduced in [Monte Carlo Methods Appl. 13 (2007) 37–70] and the variance control resulting from Multilevel Monte Carlo (MLMC) paradig...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2017-11, Vol.23 (4A), p.2643-2692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose and analyze a Multilevel Richardson–Romberg (ML2R) estimator which combines the higher order bias cancellation of the Multistep Richardson–Romberg method introduced in [Monte Carlo Methods Appl. 13 (2007) 37–70] and the variance control resulting from Multilevel Monte Carlo (MLMC) paradigm (see [Ann. Appl. Probab. 24 (2014) 1585–1620, In Large-Scale Scientific Computing (2001) 58–67 Berlin]). Thus, in standard frameworks like discretization schemes of diffusion processes, the root mean squared error (RMSE) ε > 0 can be achieved with our ML2R estimator with a global complexity of ε−2log(1/ε) instead of ε−2(log(1/ε))2 with the standard MLMC method, at least when the weak error E[Yh] – E[Y0] of the biased implemented estimator Yh can be expanded at any order in h and ∥Yh − Y0∥2 = O(h½). The ML2R estimator is then halfway between a regular MLMC and a virtual unbiased Monte Carlo. When the strong error $\Vert {\mathrm{Y}}_{\mathrm{h}}-{\mathrm{Y}}_{0}{\Vert }_{2}=\mathrm{O}\left({\mathrm{h}}^{\frac{\mathrm{\beta }}{2}}\right),\mathrm{\beta } |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.3150/16-BEJ822 |