Local energy decay for the damped wave equation

We prove local energy decay for the damped wave equation on Rd. The problem which we consider is given by a long range metric perturbation of the Euclidean Laplacian with a short range absorption index. Under a geometric control assumption on the dissipation we obtain an almost optimal polynomial de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2014-04, Vol.266 (7), p.4538-4615
Hauptverfasser: Bouclet, Jean-Marc, Royer, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove local energy decay for the damped wave equation on Rd. The problem which we consider is given by a long range metric perturbation of the Euclidean Laplacian with a short range absorption index. Under a geometric control assumption on the dissipation we obtain an almost optimal polynomial decay for the energy in suitable weighted spaces. The proof relies on uniform estimates for the corresponding “resolvent”, both for low and high frequencies. These estimates are given by an improved dissipative version of Mourre's commutators method.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2014.01.028