Prior Knowledge, Level Set Representations & Visual Grouping

In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2008-03, Vol.76 (3), p.231-243
Hauptverfasser: Rousson, Mikael, Paragios, Nikos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a projection to the image plane of the prior model modulo a similarity transformation. The optimization of a statistical metric between the evolving contour and the model leads to motion equations that evolve the contour toward the desired image properties while recovering the pose of the object in the new image. Upon convergence, a solution that is similarity invariant with respect to the model and the corresponding transformation are recovered. Promising experimental results demonstrate the potential of such an approach.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-007-0054-z