Codes over finite quotients of polynomial rings

In this paper, we study codes that are defined over the polynomial ring A=F[x]/f(x), where f(x) is a monic polynomial over a finite field F. We are interested in codes that are A-submodules of Aℓ. These codes are a generalization of quasi-cyclic codes. In this work we introduce a notion of basis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite fields and their applications 2014-01, Vol.25, p.165-181
Hauptverfasser: Berger, Thierry P., El Amrani, Nora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study codes that are defined over the polynomial ring A=F[x]/f(x), where f(x) is a monic polynomial over a finite field F. We are interested in codes that are A-submodules of Aℓ. These codes are a generalization of quasi-cyclic codes. In this work we introduce a notion of basis of divisors for these codes and a canonical generator matrix. It is a generalization of the work of K. Lally and P. Fitzpatrick. However, in contrast with K. Lally and P. Fitzpatrick, we do not use the Gröbner basis, but only the classical Euclidean division. We also study the notion of A-duality and the link with the q-ary images of these codes and the F-duality.
ISSN:1071-5797
1090-2465
DOI:10.1016/j.ffa.2013.09.004