Thermo-mechanical study of a power connector
► Cyclic insertions and heat evolution of a commercial power connector is studied. ► Experimental set-up is conceived to measure mechanical parameters of the connector. ► Numerical modelling was used to solve the differential equations for heat transfer. ► Thermal and electrical contact conductances...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2012-06, Vol.45 (5), p.889-896 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Cyclic insertions and heat evolution of a commercial power connector is studied. ► Experimental set-up is conceived to measure mechanical parameters of the connector. ► Numerical modelling was used to solve the differential equations for heat transfer. ► Thermal and electrical contact conductances were determined.
A connector provides a separable interface between two subsystems of an electronic system. The main function of the connector is to transmit a signal or distribute power. For power connectors, heating can lead to an increase in contact resistance and sometimes even to contact surface melting and thus to connector damage.
In this study, the mechanical behaviour and heat evolution of a commercial power connector used in the automotive industry was undertaken. Using an experimental set-up, the mechanical insertion force, the temperature and the resistance evolution were measured. To quantify these parameters at the contact zone, two numerical modellings, using the finite element software Ansys, were employed to give the change of the insertion force during several insertion–extraction cycles and to solve the differential equations for heat transfer in a transitory mode.
Adapted values of thermal and electrical contact conductances introduced into the numerical modelling, resulted in good values for both contact resistance and contact temperature, which were verified by experiments. |
---|---|
ISSN: | 0263-2241 1873-412X |
DOI: | 10.1016/j.measurement.2012.02.007 |